College Physics
10th Edition
ISBN: 9781285737027
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 22.3, Problem 22.4QQ
As light travels from a vacuum (n = 1) to a medium such as glass (n > 1), which of the following proper lies remains the same: the (a) wavelength, (b) wave speed, or (c) frequency?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Handwritten
Let v be the wave's speed, λ its wavelength, and f its frequency. These quantities are related via the equation v=λf. Note that, if the wave speed decreases, the wavelength must also decrease for the frequency to remain constant.
What is the wavelength λ of light in glass, if its wavelength in air is λ0, its speed in air is c, and its speed in the glass is v?
Express your answer in terms of λ0, c, and v.
If light strikes the air/glass interface at an angle 32.0 degrees to the normal, what is the angle of reflection, θr?
A light ray is incident from air into glass (ng = 1.52) then onto water (ny = 1.33). The wavelength of
light in air (na = 1) is hair = 500 nm and it travels at a speed c = 3 x 10% m/s. The wavelength of light,
2, and its frequency, f, in water, are, respectively:
376 nm,8x10*11 Hz
500 nm,6x10*14 Hz
376 nm,6x10*14 Hz
500 nm,8x10*11 Hz
Chapter 22 Solutions
College Physics
Ch. 22.2 - Which part of Figure 22.3, (a) or (b), better...Ch. 22.2 - Prob. 22.2QQCh. 22.3 - A material has an index of refraction that...Ch. 22.3 - As light travels from a vacuum (n = 1) to a medium...Ch. 22 - Prob. 1CQCh. 22 - A ray of light passes from one material into a...Ch. 22 - Prob. 3CQCh. 22 - Prob. 4CQCh. 22 - Determine whether each of the following statements...Ch. 22 - A type of mirage called a pingo is often observed...
Ch. 22 - In dispersive materials, the angle of refraction...Ch. 22 - The level of water in a clear, colorless glass can...Ch. 22 - Prob. 9CQCh. 22 - Light in medium A undergoes a total internal...Ch. 22 - Prob. 11CQCh. 22 - Try this simple experiment on your own. Take two...Ch. 22 - Prob. 13CQCh. 22 - Prob. 14CQCh. 22 - A light ray containing both blue and red...Ch. 22 - During the Apollo XI Moon landing, a...Ch. 22 - Prob. 2PCh. 22 - Prob. 3PCh. 22 - Prob. 4PCh. 22 - Prob. 5PCh. 22 - Find the speed of light in (a) water, (b) crown...Ch. 22 - A ray of light travels from air into another...Ch. 22 - Prob. 8PCh. 22 - An underwater scuba diver sees the Sun at an...Ch. 22 - Prob. 10PCh. 22 - A laser beam is incident at an angle of 30.0 to...Ch. 22 - Light containing wavelengths of 400. nm, 500. nm,...Ch. 22 - A ray of light is incident on the surface of a...Ch. 22 - Prob. 14PCh. 22 - The light emitted by a helium-neon laser has a...Ch. 22 - Figure P22.16 shows a light ray traveling in a...Ch. 22 - Prob. 17PCh. 22 - A ray of light strikes a flat, 2.00-cm-thick block...Ch. 22 - Prob. 19PCh. 22 - Prob. 20PCh. 22 - A man shines a flashlight from a boat into the...Ch. 22 - A narrow beam of ultra-sonic waves reflects off...Ch. 22 - A person looking into an empty container is able...Ch. 22 - Prob. 24PCh. 22 - Prob. 25PCh. 22 - Prob. 26PCh. 22 - An opaque cylindrical tank with an open top has a...Ch. 22 - A certain kind of glass has an index of refraction...Ch. 22 - The index of refraction for red light in water is...Ch. 22 - The index of refraction for crown glass is 1.512...Ch. 22 - A light beam containing red and violet wavelengths...Ch. 22 - Prob. 32PCh. 22 - A ray of light strikes the midpoint of one face of...Ch. 22 - For light of wavelength 589 nm. calculate the...Ch. 22 - Repeat Problem 34, but this time assume the...Ch. 22 - A beam of light is incident from air on the...Ch. 22 - Prob. 37PCh. 22 - Prob. 38PCh. 22 - A light ray is incident normally to the long face...Ch. 22 - Prob. 40PCh. 22 - A room contains air in which the speed of sound is...Ch. 22 - Prob. 42PCh. 22 - The light beam in Figure P22.43 strikes surface 2...Ch. 22 - Prob. 44PCh. 22 - A layer of ice having parallel sides floats on...Ch. 22 - A ray of light is incident at an angle 30.0 on a...Ch. 22 - When a man stands near the edge of an empty...Ch. 22 - Prob. 48APCh. 22 - Refraction causes objects submerged in water to...Ch. 22 - A narrow beam of light is incident from air onto a...Ch. 22 - Prob. 51APCh. 22 - Endoscopes are medical instruments used to examine...Ch. 22 - A piece of wire is bent through an angle . The...Ch. 22 - Prob. 54APCh. 22 - Prob. 55APCh. 22 - Prob. 56APCh. 22 - Prob. 57APCh. 22 - Students allow a narrow beam of laser light to...Ch. 22 - Prob. 59APCh. 22 - Three sheets of plastic have unknown indices of...Ch. 22 - A person swimming underwater on a bright day and...Ch. 22 - Prob. 62AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- When the sun is either rising or setting and appears to be just on the horizon, it is in fact below the horizon. The explanation for this seeming paradox is that light from the sun bends slightly when entering the earth’s atmosphere, as shown in Fig. Since our perception is based on the idea that light travels in straight lines, we perceive the light to be coming from an apparent position that is an angle d above the sun’s true position. (a) Make the simplifying assumptions that the atmosphere has uniform density, and hence uniform index of refraction n, and extends to a height h above the earth’s surface, at which point it abruptly stops. Show that the angle d is given by as attached. where R = 6378 km is the radius of the earth. (b) Calculate d using n = 1.0003 and h = 20 km. How does this compare to the angular radius of the sun, which is about one quarter of a degree? (In actuality a light ray from the sun bends gradually, not abruptly, since the density and refractive index of the…arrow_forward(a) What is the range of the wavelengths of light that is visible to the human eye? (b) Longitudinal waves show regions of compression and rarefaction. Explain what is meant by a compression and a rarefaction in terms of the behaviour of air molecules. (c) The diagram below represents a water wave. Calculate the number of wavelengths there are between X and Y.arrow_forward2.37. A 300 MHz uniform plane wave, traveling along the x-axis in the negative x-direction, whose electric field is given by E, = E,(jâ, + 3â¸)e*jkx where E, is a real constant, impinges upon a dipole antenna that is placed at the origin and whose electric field radiated toward the x-axis in the positive x-direction is given by E. = E,(â, + 2â,)e¬jke where E, is a real constant. Determine the following: (a) Polarization of the incident wave (including axial ratio and sense of rotation, if any). You must justify (state why?). (b) Polarization of the antenna (including axial ratio and sense of rotation, if any). You must justify (state why?). (c) Polarization loss factor (dimensionless and in dB). Incident Wave Antennaarrow_forward
- Two interfering light waves have intensities of 20\,W\,m−2 and 40\,W\,m−2, and the phase difference between them at some point P is π/3. The intensity at P, in W m−2−2, including interference is:(give your answer as a decimal to 1 d.p. )arrow_forwardA spherical object of radius 10.5 cm is heated to a certain temperature. After examing its emission spectrum, it is found that the maximum intensity light has wavelength 800 nm. (A) Temperature of the object (B) Net rate of heat radiation by it if the outside temperature is 39.50 C (emissitivity 0.75)arrow_forward3E0, and uHo) and for two 4. For uniform plane wave propagation in (i) ice (o 106 S/m, 8 (ii) seawater (a= 4 S/m, frequencies: (a)f 1 GHz and (b) f= 100 kHz 1 80co, and uo), compute a, ß, A, 8, and parrow_forward
- Scientists use laser range finding to measure the distance to the moonwith great accuracy. A very brief (100 ps) laser pulse, with a wavelengthof 532 nm, is fired at the moon, where it reflects off an array of 100 4.0-cm-diameter mirrors placed there by Apollo 14 astronauts in 1971. The reflected laser light returns to earth, where it is collected by a telescope and detected. The average earth-moon distance is 384,000 km. The laser beam spreads out on its way to the moon because of diffraction, reaching the mirrors with an intensity of 300 W/m2. The reflected beam spreads out even more on its way back because of diffraction due to the circular aperture of the mirrors.a. What is the round-trip time for the laser pulse to travel to the moon and back?b. If we want to measure the distance to the moon to an accuracy of 1.0 cm, how accurately must the arrival time of the returning pulse be measured?c. Because of the spread of the beam due to diffraction, the light arriving at earth from one…arrow_forwardAt room temperature (20 C), estimate the wavelength range of normal human hearing. λmin=____m λmiax____m Estimate the wavelength range for visible light. λmin=____m λmax=____m please show full work!!!!arrow_forwardSound waves diffract or bend around the edges of a doorway. Larger wavelengths diffract more than smaller wavelengths. (a) The speed of sound is 343 m/s. With what speed would a 57.0 kg person have to move through a doorway to diffract to the same extent as a 146 Hz bass tone? (b) At the speed calculated in part (a), how long in years (365.25 days) would it take the person to move a distance of one meter?arrow_forward
- From your spacecraft at Mars, a basalt lava flow is 315 km below. a) What is the range delay time of the reflection caused by the ground? b) After moving along track in your orbit, the lava flow is still 315 km below, but there is now 80 m of ice (ɛ=3.15) on top of the ground. What is the new range delay time of the lava reflection? c) Does the returned signal return earlier or later than if there were no ice present? Why? 5:arrow_forwardGiven the Dispersion relation n=1+2pi*(B/wavelength) where B is 10nm, find the group and phase velocity for light with a wavelength of 600nmarrow_forwardA standing wave of light in glass (index of refraction = 1.5) is observed to have a distance of 1.0 cm between successive nodes. What is the frequency of light in GHz, to the nearest GHz? Answer:arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Polarization of Light: circularly polarized, linearly polarized, unpolarized light.; Author: Physics Videos by Eugene Khutoryansky;https://www.youtube.com/watch?v=8YkfEft4p-w;License: Standard YouTube License, CC-BY