
(a)
Interpretation:
To draw all resonance structures of enolate ion formed from the given set of compounds and predict whether a substantial amount of starting
Concept introduction:
Keto-enol isomerization is possible when a keto group present in the compound has a movable hydrogen atom in the next carbon attached to the carbonyl group. This occurs generally in almost all keto compounds where a chemical equilibria is present between the keto and enol form of the compound. Conversion of keto to its enol form is known as keto-enol tautomerisation. This conversion occurs in presence of acid or base. The ion fomed after the deprotonation using base at the
Symmetrical ketone=Symmetrical
Unsymmetrical Ketone=Unymmetrical
To Draw : The resonance structure of enolate ion and predict whether substantial amount of starting ketone will be present after equilibrium if sodium ethoxide is used as base.
(b)
Interpretation:
To draw all resonance structures of enolate ion formed from the given set of compounds and predict whether a substantial amount of starting ketone will be present with enolate after equilibrium when treated with sodium ethoxide.
Concept introduction:
Keto-enol isomerization is possible when a keto group present in the compound has a movable hydrogen atom in the next carbon attached to the carbonyl group. This occurs generally in almost all keto compounds where a chemical equilibria is present between the keto and enol form of the compound. Conversion of keto to its enol form is known as keto-enol tautomerisation. This conversion occurs in presence of acid or base. The ion fomed after the deprotonation using base at the
Symmetrical ketone=Symmetrical
Unsymmetrical Ketone=Unymmetrical
To Draw : The resonance structure of enolate ion and predict whether substantial amount of starting ketone will be present after equilibrium if sodium ethoxide is used as base.
(c)
Interpretation:
To draw all resonance structures of enolate ion formed from the given set of compounds and predict whether a substantial amount of starting ketone will be present with enolate after equilibrium when treated with sodium ethoxide.
Concept introduction:
Keto-enol isomerization is possible when a keto group present in the compound has a movable hydrogen atom in the next carbon attached to the carbonyl group. This occurs generally in almost all keto compounds where a chemical equilibria is present between the keto and enol form of the compound. Conversion of keto to its enol form is known as keto-enol tautomerisation. This conversion occurs in presence of acid or base. The ion fomed after the deprotonation using base at the
Symmetrical ketone=Symmetrical
Unsymmetrical Ketone=Unymmetrical
To Draw : The resonance structure of enolate ion and predict whether substantial amount of starting ketone will be present after equilibrium if sodium ethoxide is used as base.
(d)
Interpretation:
To draw all resonance structures of enolate ion formed from the given set of compounds and predict whether a substantial amount of starting ketone will be present with enolate after equilibrium when treated with sodium ethoxide.
Concept introduction:
Keto-enol isomerization is possible when a keto group present in the compound has a movable hydrogen atom in the next carbon attached to the carbonyl group. This occurs generally in almost all keto compounds where a chemical equilibria is present between the keto and enol form of the compound. Conversion of keto to its enol form is known as keto-enol tautomerisation. This conversion occurs in presence of acid or base. The ion fomed after the deprotonation using base at the
Symmetrical ketone=Symmetrical
Unsymmetrical Ketone=Unymmetrical
To Draw : The resonance structure of enolate ion and predict whether substantial amount of starting ketone will be present after equilibrium if sodium ethoxide is used as base.

Want to see the full answer?
Check out a sample textbook solution
Chapter 22 Solutions
Organic Chemistry, Binder Ready Version
- For benzene, the ∆H° of vaporization is 30.72 kJ/mol and the ∆S° of vaporization is 86.97 J/mol・K. At 1.00 atm and 228.0 K, what is the ∆G° of vaporization for benzene, in kJ/mol?arrow_forwardThe reaction Q(g) + R(g) → Z(l) is shown to be exothermic. Which of the following is true concerning the reaction. it is spontaneous only at High T, it is spontaneous at low T it is nonspontaneous at all T it is spontanrous at all T. it is non spontaneous only at low T.arrow_forwardThe reaction Q(g) + R(g) → Z(l) is shown to be exothermic. Which of the following is true concerning the reactionarrow_forward
- Which of the following has the largest standard molar entropy, S° (298.15 K) He H2 NaCl KBr Hgarrow_forwardWhich of the following is true for a particular reaction if ∆G° is -40.0 kJ/mol at 290 K and –20.0 kJ/mol at 390 K?arrow_forwardWhat is the major product of the following reaction? O O OH OH 1. BH 2. H₂O₂, NaOH OH OHarrow_forward
- How many products are possible from the following reaction? Do not take into account stereoisomers. 01 04 03 O O O O 02 CH H₂SO4 heatarrow_forwardplease helparrow_forwardChoose the major product of the reaction with correct regio- and stereochemistry. Br2 H₂O O "Br Br & O 'Br OH Br 吡 O OH OH Br "OH Brarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





