
EBK NUMERICAL ANALYSIS
10th Edition
ISBN: 9781305465350
Author: BURDEN
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2.2, Problem 9ES
Use Theorem 2.3 to show that g(x) = π + 0.5 sin(x/2) has a unique fixed point on [0, 2π]. Use fixed-point iteration to find an approximation to the fixed point that is accurate to within 10−2. Use Corollary 2.5 to estimate the number of iterations required to achieve 10−2 accuracy and compare this theoretical estimate to the number actually needed.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
13) Let U = {j, k, l, m, n, o, p} be the universal set. Let V = {m, o,p), W = {l,o, k}, and X = {j,k). List the elements of
the following sets and the cardinal number of each set.
a) W° and n(W)
b) (VUW) and n((V U W)')
c) VUWUX and n(V U W UX)
d) vnWnX and n(V WnX)
9) Use the Venn Diagram given below to determine the number elements in each of the following sets.
a) n(A).
b) n(A° UBC).
U
B
oh
a
k
gy
ท
W
z r
e t
་
C
10) Find n(K) given that n(T) = 7,n(KT) = 5,n(KUT) = 13.
Chapter 2 Solutions
EBK NUMERICAL ANALYSIS
Ch. 2.1 - Use the Bisection method to find p3 for f(x)=xcosx...Ch. 2.1 - Let f(x) = 3(x +1)(x 12)(x 1) = 0. Use the...Ch. 2.1 - Use the Bisection method to find solutions...Ch. 2.1 - Use the Bisection method to find solutions...Ch. 2.1 - Use the Bisection method to find solutions...Ch. 2.1 - Prob. 7ESCh. 2.1 - Prob. 8ESCh. 2.1 - Prob. 9ESCh. 2.1 - Prob. 10ESCh. 2.1 - Prob. 11ES
Ch. 2.1 - Let f(x) = (x + 2)(x + 1)x(x 1)3(x 2). To which...Ch. 2.1 - Find an approximation to 253 correct to within 104...Ch. 2.1 - Find an approximation to 3 correct to within 104...Ch. 2.1 - A trough of length L has a cross section in the...Ch. 2.1 - Use Theorem 2.1 to find a bound for the number of...Ch. 2.1 - Prob. 18ESCh. 2.1 - Prob. 19ESCh. 2.1 - Let f(x) = (x 1)10, p = 1, and pn = 1 + 1/n. Show...Ch. 2.1 - The function defined by f(x) = sin x has zeros at...Ch. 2.1 - Prob. 1DQCh. 2.1 - Prob. 2DQCh. 2.1 - Is the Bisection method sensitive to the starting...Ch. 2.2 - Use algebraic manipulation to show that each of...Ch. 2.2 - a. Perform four iterations, if possible, on each...Ch. 2.2 - Let f(x) = x3 2x + 1. To solve f(x) = 0, the...Ch. 2.2 - Let f(x) = x4 + 3x2 2. To solve f(x) = 0, the...Ch. 2.2 - The following four methods are proposed to compute...Ch. 2.2 - Prob. 6ESCh. 2.2 - Prob. 7ESCh. 2.2 - Prob. 8ESCh. 2.2 - Use Theorem 2.3 to show that g(x) = + 0.5...Ch. 2.2 - Use Theorem 2.3 to show that g(x) = 2x has a...Ch. 2.2 - Use a fixed-point iteration method to find an...Ch. 2.2 - Use a fixed-point iteration method to determine a...Ch. 2.2 - Use a fixed-point iteration method to determine a...Ch. 2.2 - Prob. 20ESCh. 2.2 - Prob. 21ESCh. 2.2 - a. Show that Theorem 2.3 is true if the inequality...Ch. 2.2 - a. Use Theorem 2.4 to show that the sequence...Ch. 2.2 - Prob. 24ESCh. 2.2 - Prob. 25ESCh. 2.2 - Suppose that g is continuously differentiable on...Ch. 2.3 - Let f(x) = x2 6 and p0 = 1. Use Newtons method to...Ch. 2.3 - Let f(x) = x3 cos x and p0 = 1. Use Newtons...Ch. 2.3 - Let f(x) = x2 6. With p0 = 3 and p1 = 2, find p3....Ch. 2.3 - Let f(x) = x3 cos x. With p0 = 1 and p1 = 0, find...Ch. 2.3 - Prob. 11ESCh. 2.3 - Prob. 12ESCh. 2.3 - The fourth-degree polynomial...Ch. 2.3 - Prob. 14ESCh. 2.3 - Prob. 15ESCh. 2.3 - Prob. 16ESCh. 2.3 - Prob. 22ESCh. 2.3 - Prob. 23ESCh. 2.3 - Prob. 24ESCh. 2.3 - Prob. 25ESCh. 2.3 - Prob. 27ESCh. 2.3 - A drug administered to a patient produces a...Ch. 2.3 - Prob. 30ESCh. 2.3 - Prob. 32ESCh. 2.3 - Prob. 1DQCh. 2.3 - Prob. 2DQCh. 2.3 - Prob. 3DQCh. 2.3 - Prob. 4DQCh. 2.4 - Prob. 6ESCh. 2.4 - a. Show that for any positive integer k, the...Ch. 2.4 - Prob. 8ESCh. 2.4 - a. Construct a sequence that converges to 0 of...Ch. 2.4 - Prob. 10ESCh. 2.4 - Prob. 11ESCh. 2.4 - Prob. 12ESCh. 2.4 - Prob. 13ESCh. 2.4 - Prob. 14ESCh. 2.4 - Prob. 1DQCh. 2.4 - Prob. 2DQCh. 2.4 - Prob. 4DQCh. 2.5 - Let g(x) = cos(x 1) and p0(0) = 2. Use...Ch. 2.5 - Prob. 4ESCh. 2.5 - Prob. 5ESCh. 2.5 - Prob. 6ESCh. 2.5 - Use Steffensens method to find, to an accuracy of...Ch. 2.5 - Prob. 8ESCh. 2.5 - Prob. 9ESCh. 2.5 - Use Steffensens method with p0 = 3 to compute an...Ch. 2.5 - Use Steffensens method to approximate the...Ch. 2.5 - Prob. 12ESCh. 2.5 - Prob. 13ESCh. 2.5 - Prob. 14ES
Additional Math Textbook Solutions
Find more solutions based on key concepts
Complete each statement with the correct term from the column on the right. Some of the choices may not be used...
Intermediate Algebra (13th Edition)
First Derivative Test a. Locale the critical points of f. b. Use the First Derivative Test to locale the local ...
Calculus: Early Transcendentals (2nd Edition)
In Exercises 5-36, express all probabilities as fractions.
23. Combination Lock The typical combination lock us...
Elementary Statistics
For Problems 23-28, write in simpler form, as in Example 4. logbFG
Finite Mathematics for Business, Economics, Life Sciences and Social Sciences
Teacher Salaries
The following data from several years ago represent salaries (in dollars) from a school distri...
Elementary Statistics: A Step By Step Approach
(a) Make a stem-and-leaf plot for these 24 observations on the number of customers who used a down-town CitiBan...
APPLIED STAT.IN BUS.+ECONOMICS
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- 7) Use the Venn Diagram below to determine the sets A, B, and U. A = B = U = Blue Orange white Yellow Black Pink Purple green Grey brown Uarrow_forward8. For x>_1, the continuous function g is decreasing and positive. A portion of the graph of g is shown above. For n>_1, the nth term of the series summation from n=1 to infinity a_n is defined by a_n=g(n). If intergral 1 to infinity g(x)dx converges to 8, which of the following could be true? A) summation n=1 to infinity a_n = 6. B) summation n=1 to infinity a_n =8. C) summation n=1 to infinity a_n = 10. D) summation n=1 to infinity a_n diverges.arrow_forward8) Use the Venn diagram provided to shade An Bº. A B U Darrow_forward
- 5) Describe the difference between disjoint sets and overlapping sets.arrow_forward12) Suppose U = {a,b,c,d,e) and A = {a, b, c, e) and B = (c,d,e). Determine (An B).arrow_forward1) Use the roster method to list the elements of the set consisting of: a) All positive multiples of 3 that are less than 20. b) Nothing (An empty set).arrow_forward
- 2) Let M = {all postive integers), N = {0,1,2,3... 100), 0= {100,200,300,400,500). Determine if the following statements are true or false and explain your reasoning. a) NCM b) 0 C M c) O and N have at least one element in common d) O≤ N e) o≤o 1arrow_forward4) Which of the following universal sets has W = {12,79, 44, 18) as a subset? Choose one. a) T = {12,9,76,333, 44, 99, 1000, 2} b) V = {44,76, 12, 99, 18,900,79,2} c) Y = {76,90, 800, 44, 99, 55, 22} d) x = {79,66,71, 4, 18, 22,99,2}arrow_forward3) What is the universal set that contains all possible integers from 1 to 8 inclusive? Choose one. a) A = {1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8} b) B={-1,0,1,2,3,4,5,6,7,8} c) C={1,2,3,4,5,6,7,8} d) D = {0,1,2,3,4,5,6,7,8}arrow_forward
- A smallish urn contains 25 small plastic bunnies – 7 of which are pink and 18 of which are white. 10 bunnies are drawn from the urn at random with replacement, and X is the number of pink bunnies that are drawn. (a) P(X = 5) ≈ (b) P(X<6) ≈ The Whoville small urn contains 100 marbles – 60 blue and 40 orange. The Grinch sneaks in one night and grabs a simple random sample (without replacement) of 15 marbles. (a) The probability that the Grinch gets exactly 6 blue marbles is [ Select ] ["≈ 0.054", "≈ 0.043", "≈ 0.061"] . (b) The probability that the Grinch gets at least 7 blue marbles is [ Select ] ["≈ 0.922", "≈ 0.905", "≈ 0.893"] . (c) The probability that the Grinch gets between 8 and 12 blue marbles (inclusive) is [ Select ] ["≈ 0.801", "≈ 0.760", "≈ 0.786"] . The Whoville small urn contains 100 marbles – 60 blue and 40 orange. The Grinch sneaks in one night and grabs a simple random sample (without replacement) of 15 marbles. (a)…arrow_forwardUsing Karnaugh maps and Gray coding, reduce the following circuit represented as a table and write the final circuit in simplest form (first in terms of number of gates then in terms of fan-in of those gates).arrow_forwardConsider the alphabet {a, b, c}.• Design a regular expression that recognizes all strings over {a, b, c} that have at least three nonconsec-utive c characters (two characters are non-consecutive if there is at least one character between them)and at least one a character.• Explain how your regular expression recognizes the string cbbcccac by clearly identifying which partsof the string match to the components of your regular expressionarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Functions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning

Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning


Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning

Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY