A solar oven is to be made from an open box with reflective sides. Each box is made from a 30-in. by 24-in. rectangular sheet of aluminium with square of length x (in inches) removed from each corner. Then the flaps are folder up to form an open box. a. Show that the volume of the box is given by V x = 4 x 3 − 108 x 2 + 720 x for 0 < x < 12. b. Graph the function from part (a) and a “maximumâ€� feature on a graphing utility to approximate the length of the sides of the squares that should be removed to maximize the volume. Round to the nearest tenth of an inch. c. Approximate the maximum volume. Round to the nearest cubic inch.
A solar oven is to be made from an open box with reflective sides. Each box is made from a 30-in. by 24-in. rectangular sheet of aluminium with square of length x (in inches) removed from each corner. Then the flaps are folder up to form an open box. a. Show that the volume of the box is given by V x = 4 x 3 − 108 x 2 + 720 x for 0 < x < 12. b. Graph the function from part (a) and a “maximumâ€� feature on a graphing utility to approximate the length of the sides of the squares that should be removed to maximize the volume. Round to the nearest tenth of an inch. c. Approximate the maximum volume. Round to the nearest cubic inch.
Solution Summary: The author illustrates how a solar oven has to be made from an open box with reflective sides. The volume of the box is given by cvolume=lengthtimes width
A solar oven is to be made from an open box with reflective sides. Each box is made from a 30-in. by 24-in. rectangular sheet of aluminium with square of length x (in inches) removed from each corner. Then the flaps are folder up to form an open box.
a. Show that the volume of the box is given by
V
x
=
4
x
3
−
108
x
2
+
720
x
for
0
<
x
<
12.
b. Graph the function from part (a) and a “maximum� feature on a graphing utility to approximate the length of the sides of the squares that should be removed to maximize the volume. Round to the nearest tenth of an inch.
c. Approximate the maximum volume. Round to the nearest cubic inch.
1. Show that the vector field
F(x, y, z)
=
(2x sin ye³)ix² cos yj + (3xe³ +5)k
satisfies the necessary conditions for a conservative vector field, and find a potential function for
F.
1. Newton's Law of Gravitation (an example of an inverse square law) states that the magnitude
of the gravitational force between two objects with masses m and M is
|F|
mMG
|r|2
where r is the distance between the objects, and G is the gravitational constant. Assume that the
object with mass M is located at the origin in R³. Then, the gravitational force field acting on
the object at the point r = (x, y, z) is given by
F(x, y, z) =
mMG
r3
r.
mMG
mMG
Show that the scalar vector field f(x, y, z) =
=
is a potential function for
r
√√x² + y² .
Fi.e. show that F = Vf.
Remark: f is the negative of the physical potential energy, because F = -V(-ƒ).
2. Suppose f(x) = 3x² - 5x. Show all your work for the problems below.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Interpreting Graphs of Quadratic Equations (GMAT/GRE/CAT/Bank PO/SSC CGL) | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=BHgewRcuoRM;License: Standard YouTube License, CC-BY
Solve a Trig Equation in Quadratic Form Using the Quadratic Formula (Cosine, 4 Solutions); Author: Mathispower4u;https://www.youtube.com/watch?v=N6jw_i74AVQ;License: Standard YouTube License, CC-BY