
EBK STUDENT SOLUTIONS MANUAL WITH STUDY
10th Edition
ISBN: 9781337520379
Author: Vuille
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 22, Problem 7P
A ray of light travels from air into another medium, making an angle of θ1 = 45.0° with the normal as in Figure P22.7. Find the angle of refraction θ2 if the second medium is (a) fused quartz, (b) carbon disulfide, and (c) water.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
No chatgpt pls will upvote
Shown to the right is a block of mass m=5.71kgm=5.71kg on a ramp that makes an angle θ=24.1∘θ=24.1∘ with the horizontal. This block is being pushed by a horizontal force, F=229NF=229N. The coefficient of kinetic friction between the two surfaces is μ=0.51μ=0.51.
Enter an expression for the acceleration of the block up the ramp using variables from the problem statement together with gg for the acceleration due to gravity.
a=
If the density and atomic mass of copper are respectively 8.80 x 103 kg/m³ and 63.5 kg/kmol (note that 1 kmol = 1,000 mol), and copper has one free electron per copper atom, determine the following.
(a) the drift speed of the electrons in a 10 gauge copper wire (2.588 mm in diameter) carrying a 13.5 A current
1.988-4
See if you can obtain an expression for the drift speed of electrons in a copper wire in terms of the current in the wire, the diameter of the wire, the molecular weight and mass density of copper, Avogadro's number, and the charge
on an electron. m/s
(b) the Hall voltage if a 2.68 T field is applied perpendicular to the wire
3.34e-6
x
Can you start with basic equations for the electric and magnetic forces acting on the electrons moving through the wire and obtain a relationship between the magnitude of the electric and magnetic field and the drift speed of the
electrons? How is the magnitude of the electric field related to the Hall voltage and the diameter of the wire? V
Chapter 22 Solutions
EBK STUDENT SOLUTIONS MANUAL WITH STUDY
Ch. 22.2 - Which part of Figure 22.3, (a) or (b), better...Ch. 22.2 - Prob. 22.2QQCh. 22.3 - A material has an index of refraction that...Ch. 22.3 - As light travels from a vacuum (n = 1) to a medium...Ch. 22 - Prob. 1CQCh. 22 - A ray of light passes from one material into a...Ch. 22 - Prob. 3CQCh. 22 - Prob. 4CQCh. 22 - Determine whether each of the following statements...Ch. 22 - A type of mirage called a pingo is often observed...
Ch. 22 - In dispersive materials, the angle of refraction...Ch. 22 - The level of water in a clear, colorless glass can...Ch. 22 - Prob. 9CQCh. 22 - Light in medium A undergoes a total internal...Ch. 22 - Prob. 11CQCh. 22 - Try this simple experiment on your own. Take two...Ch. 22 - Prob. 13CQCh. 22 - Prob. 14CQCh. 22 - A light ray containing both blue and red...Ch. 22 - During the Apollo XI Moon landing, a...Ch. 22 - Prob. 2PCh. 22 - Prob. 3PCh. 22 - Prob. 4PCh. 22 - Prob. 5PCh. 22 - Find the speed of light in (a) water, (b) crown...Ch. 22 - A ray of light travels from air into another...Ch. 22 - Prob. 8PCh. 22 - An underwater scuba diver sees the Sun at an...Ch. 22 - Prob. 10PCh. 22 - A laser beam is incident at an angle of 30.0 to...Ch. 22 - Light containing wavelengths of 400. nm, 500. nm,...Ch. 22 - A ray of light is incident on the surface of a...Ch. 22 - Prob. 14PCh. 22 - The light emitted by a helium-neon laser has a...Ch. 22 - Figure P22.16 shows a light ray traveling in a...Ch. 22 - Prob. 17PCh. 22 - A ray of light strikes a flat, 2.00-cm-thick block...Ch. 22 - Prob. 19PCh. 22 - Prob. 20PCh. 22 - A man shines a flashlight from a boat into the...Ch. 22 - A narrow beam of ultra-sonic waves reflects off...Ch. 22 - A person looking into an empty container is able...Ch. 22 - Prob. 24PCh. 22 - Prob. 25PCh. 22 - Prob. 26PCh. 22 - An opaque cylindrical tank with an open top has a...Ch. 22 - A certain kind of glass has an index of refraction...Ch. 22 - The index of refraction for red light in water is...Ch. 22 - The index of refraction for crown glass is 1.512...Ch. 22 - A light beam containing red and violet wavelengths...Ch. 22 - Prob. 32PCh. 22 - A ray of light strikes the midpoint of one face of...Ch. 22 - For light of wavelength 589 nm. calculate the...Ch. 22 - Repeat Problem 34, but this time assume the...Ch. 22 - A beam of light is incident from air on the...Ch. 22 - Prob. 37PCh. 22 - Prob. 38PCh. 22 - A light ray is incident normally to the long face...Ch. 22 - Prob. 40PCh. 22 - A room contains air in which the speed of sound is...Ch. 22 - Prob. 42PCh. 22 - The light beam in Figure P22.43 strikes surface 2...Ch. 22 - Prob. 44PCh. 22 - A layer of ice having parallel sides floats on...Ch. 22 - A ray of light is incident at an angle 30.0 on a...Ch. 22 - When a man stands near the edge of an empty...Ch. 22 - Prob. 48APCh. 22 - Refraction causes objects submerged in water to...Ch. 22 - A narrow beam of light is incident from air onto a...Ch. 22 - Prob. 51APCh. 22 - Endoscopes are medical instruments used to examine...Ch. 22 - A piece of wire is bent through an angle . The...Ch. 22 - Prob. 54APCh. 22 - Prob. 55APCh. 22 - Prob. 56APCh. 22 - Prob. 57APCh. 22 - Students allow a narrow beam of laser light to...Ch. 22 - Prob. 59APCh. 22 - Three sheets of plastic have unknown indices of...Ch. 22 - A person swimming underwater on a bright day and...Ch. 22 - Prob. 62AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) At what speed (in m/s) will a proton move in a circular path of the same radius as an electron that travels at 7.85 x 100 m/s perpendicular to the Earth's magnetic field at an altitude where the field strength is 1.20 x 10-5 T? 4.27e3 m/s (b) What would the radius (in m) of the path be if the proton had the same speed as the electron? 0.685 x m (c) What would the radius (in m) be if the proton had the same kinetic energy as the electron? 0.0084 m (d) What would the radius (in m) be if the proton had the same momentum as the electron? 0.0303 x marrow_forwardTwo charges are placed on the x axis. One of the charges (91 = +6.63 μC) is at x₁ = +3.00 cm and the other (92 = -24.2 μC) is at x2 = +9.00 cm. Find the net electric field (magnitude and direction given as a plus or minus sign) at (a) x = 0 cm and (b) x = +6.00 cm.arrow_forwardThe diagram shows the all of the forces acting on a body of mass 2.76 kg. The three forces have magnitudes F1 = 65.2 N, F2 = 21.6 N, and F3 = 77.9 N, with directions as indicted in the diagram, where θ = 49.9 degrees and φ = 21.1 degrees. The dashed lines are parallel to the x and y axes. At t = 0, the body is moving at a speed of 6.87 m/s in the positive x direction. a. whats the x component of the acceleration? b. whats the y component of the acceleration? c. whats the speed of the body in m/s at t = 12.3s? d. whats the magnitude of the displacement of the body n meters between t = 0 and 12.3s?arrow_forward
- No chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forwardA cylinder with a piston contains 0.153 mol of nitrogen at a pressure of 1.83×105 Pa and a temperature of 290 K. The nitrogen may be treated as an ideal gas. The gas is first compressed isobarically to half its original volume. It then expands adiabatically back to its original volume, and finally it is heated isochorically to its original pressure. Part A Compute the temperature at the beginning of the adiabatic expansion. Express your answer in kelvins. ΕΠΙ ΑΣΦ T₁ = ? K Submit Request Answer Part B Compute the temperature at the end of the adiabatic expansion. Express your answer in kelvins. Π ΑΣΦ T₂ = Submit Request Answer Part C Compute the minimum pressure. Express your answer in pascals. ΕΠΙ ΑΣΦ P = Submit Request Answer ? ? K Paarrow_forward
- Learning Goal: To understand the meaning and the basic applications of pV diagrams for an ideal gas. As you know, the parameters of an ideal gas are described by the equation pV = nRT, where p is the pressure of the gas, V is the volume of the gas, n is the number of moles, R is the universal gas constant, and T is the absolute temperature of the gas. It follows that, for a portion of an ideal gas, pV = constant. Τ One can see that, if the amount of gas remains constant, it is impossible to change just one parameter of the gas: At least one more parameter would also change. For instance, if the pressure of the gas is changed, we can be sure that either the volume or the temperature of the gas (or, maybe, both!) would also change. To explore these changes, it is often convenient to draw a graph showing one parameter as a function of the other. Although there are many choices of axes, the most common one is a plot of pressure as a function of volume: a pV diagram. In this problem, you…arrow_forwardLearning Goal: To understand the meaning and the basic applications of pV diagrams for an ideal gas. As you know, the parameters of an ideal gas are described by the equation pV = nRT, where p is the pressure of the gas, V is the volume of the gas, n is the number of moles, R is the universal gas constant, and T is the absolute temperature of the gas. It follows that, for a portion of an ideal gas, pV = constant. T One can see that, if the amount of gas remains constant, it is impossible to change just one parameter of the gas: At least one more parameter would also change. For instance, if the pressure of the gas is changed, we can be sure that either the volume or the temperature of the gas (or, maybe, both!) would also change. To explore these changes, it is often convenient to draw a graph showing one parameter as a function of the other. Although there are many choices of axes, the most common one is a plot of pressure as a function of volume: a pV diagram. In this problem, you…arrow_forward■ Review | Constants A cylinder with a movable piston contains 3.75 mol of N2 gas (assumed to behave like an ideal gas). Part A The N2 is heated at constant volume until 1553 J of heat have been added. Calculate the change in temperature. ΜΕ ΑΣΦ AT = Submit Request Answer Part B ? K Suppose the same amount of heat is added to the N2, but this time the gas is allowed to expand while remaining at constant pressure. Calculate the temperature change. AT = Π ΑΣΦ Submit Request Answer Provide Feedback ? K Nextarrow_forward
- 4. I've assembled the following assortment of point charges (-4 μC, +6 μC, and +3 μC) into a rectangle, bringing them together from an initial situation where they were all an infinite distance away from each other. Find the electric potential at point "A" (marked by the X) and tell me how much work it would require to bring a +10.0 μC charge to point A if it started an infinite distance away (assume that the other three charges remains fixed). 300 mm -4 UC "A" 0.400 mm +6 UC +3 UC 5. It's Friday night, and you've got big party plans. What will you do? Why, make a capacitor, of course! You use aluminum foil as the plates, and since a standard roll of aluminum foil is 30.5 cm wide you make the plates of your capacitor each 30.5 cm by 30.5 cm. You separate the plates with regular paper, which has a thickness of 0.125 mm and a dielectric constant of 3.7. What is the capacitance of your capacitor? If you connect it to a 12 V battery, how much charge is stored on either plate? =arrow_forwardLearning Goal: To understand the meaning and the basic applications of pV diagrams for an ideal gas. As you know, the parameters of an ideal gas are described by the equation pV = nRT, where p is the pressure of the gas, V is the volume of the gas, n is the number of moles, R is the universal gas constant, and T is the absolute temperature of the gas. It follows that, for a portion of an ideal gas, PV T = constant. One can see that, if the amount of gas remains constant, it is impossible to change just one parameter of the gas: At least one more parameter would also change. For instance, if the pressure of the gas is changed, we can be sure that either the volume or the temperature of the gas (or, maybe, both!) would also change. To explore these changes, it is often convenient to draw a graph showing one parameter as a function of the other. Although there are many choices of axes, the most common one is a plot of pressure as a function of volume: a pV diagram. In this problem, you…arrow_forwardA-e pleasearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
AP Physics 2 - Geometric Optics: Mirrors and Lenses - Intro Lesson; Author: N. German;https://www.youtube.com/watch?v=unT297HdZC0;License: Standard YouTube License, CC-BY