Physics for Scientists and Engineers, Vol. 1
Physics for Scientists and Engineers, Vol. 1
6th Edition
ISBN: 9781429201322
Author: Paul A. Tipler, Gene Mosca
Publisher: Macmillan Higher Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 22, Problem 77P

a.

To determine

The magnitude and the direction of the electric field at x=0.40m .

The electric field E=203.6kN/C pointing at θ=56.3° from the x axis.

Given:

  Physics for Scientists and Engineers, Vol. 1, Chapter 22, Problem 77P , additional homework tip  1

The charges are placed as shown in the figure. The first plane at y=0.6m . The second plane at x=1.0m . The spherical shell centered at the intersection of the planes at point (1.0,-0.6) in the x-y plane.

The surface charge densities are

  σ1=3.0μnC/m2

  σ2=2.0μnC/m2

  σ3=3.0μC/m3

Formula Used:

Electric field

  E=σ2εor^

E is the electric field.

  σ is the surface charge density.

  r^ is the unit vector in the direction normal to the charged plane.

  εo is the permittivity of free space.

The resultant electric field at point is E=E1+E2+Eshpere

Calculations:

The resultant electric field at point is E=E1+E2+Eshpere

  E=σ2εor^

Electric field at point 1 due to sphere.

As the point is inside the sphere the electric field is zero.

  Eshpere=0

Electric field at point 1 due to plane 1

Substituting values

  E1=3.0μnC/m22(8.85×1012C2/N.m2)j ^

  E1=(169.4kN/C)j ^

The electric field at point 1 due to plane 2.

  E2=-2.0μnC/m22(8.85×1012C2/N.m2)( i ^)

  E2=(112.9kN/C) i ^

Substituting in the equation

The resultant electric field at point is E=E1+E2+Eshpere

Substituting

  E=(112.9kN/C) i ^ +(169.4kN/C)j ^ +0

  E=(112.9kN/C) i ^ +(169.4kN/C)j ^

The magnitude of the electric field is

   E=(x2+y2)

  E=(112.9kN/C)2+(169.4kN/C)2

  E=203.6kN/C2

Direction:

  θ=tan1(yx)

  θ=tan1(169.4kN/C112.9kN/C)=56.31°

Conclusion:

The electric field E=203.6kN/C pointing at θ=56.3° from the x axis.

b.

The magnitude and the direction of the electric field at x=2.50m .

The electric field E=263kN/C pointing at θ=153° from the x axis.

Given:

  Physics for Scientists and Engineers, Vol. 1, Chapter 22, Problem 77P , additional homework tip  2

The charges are placed as shown in the figure. The first plane at y=0.6m . The second plane at x=1.0m . The spherical shell centered at the intersection of the planes at point (1.0,-0.6) in the x-y plane.

The surface charge densities are

  σ1=3.0μnC/m2

  σ2=2.0μnC/m2

  σ3=3.0μC/m3

Formula Used:

Electric field

  E=σ2εor^

E is the electric field.

  σ is the surface charge density.

  r^ is the unit vector in the direction normal to the charged plane.

  εo is the permittivity of free space.

The resultant electric field at point is E=E1+E2+Eshpere

Calculations:

The resultant electric field at point is E=E1+E2+Eshpere

  E=σ2εor^

Electric field at point 1 due to sphere.

  E =(kQspherer2)r^ where Q is the charge in the sphere.

Where r^ is a unit vector pointing from (1.0m,-0.6m) to (2.50m,0)

  Qsphere=σAsphere

  =4πσR2

  Qsphere=4π(3.0μC/m2)(1.0m)2

  Qsphere=37.30μC

  r^=0.9285 i ^+0.3714j ^

  Esphere=(8.988×109N.m2/C2)(37.70μC)(1.616m)2r^

  Esphere=(129.8kN/C)(0.9285 i ^+0.3714j ^)

  Esphere=(120.5kN/C) i ^+(-48.22kN/C)j ^

Electric field at point 1 due to plane 1

Substituting values in the formula E=σ2εor^

  E1=3.0μnC/m22(8.85×1012C2/N.m2)j ^

  E1=(169.4kN/C)j ^

The electric field at point 1 due to plane 2.

  E2=-2.0μnC/m22(8.85×1012C2/N.m2)( i ^)

  E2=(112.9kN/C) i ^

Substituting in the equation

The resultant electric field at point is E=E1+E2+Eshpere

Substituting

  E=(112.9kN/C) i ^ +(169.4kN/C)j ^ +(120.5kN/C) i ^+(-48.22kN/C)j ^

  E=(233.5kN/C) i ^ +(121.2kN/C)j ^

The magnitude of the electric field is

  E=(x2+y2)

  E=(233.5kN/C)2+(121.2kN/C)2

  E=263kN/C

Direction:

  θ=tan1(yx)

  θ=tan1(121.2kN/C-233.5kN/C)=153°

Conclusion:

The electric field E=263kN/C pointing at θ=153° from the x axis.

a.

Expert Solution
Check Mark

Answer to Problem 77P

The electric field E=203.6kN/C pointing at θ=56.3° from the x axis.

Explanation of Solution

Given:

  Physics for Scientists and Engineers, Vol. 1, Chapter 22, Problem 77P , additional homework tip  3

The charges are placed as shown in the figure. The first plane at y=0.6m . The second plane at x=1.0m . The spherical shell centered at the intersection of the planes at point (1.0,-0.6) in the x-y plane.

The surface charge densities are

  σ1=3.0μnC/m2

  σ2=2.0μnC/m2

  σ3=3.0μC/m3

Formula Used:

Electric field

  E=σ2εor^

E is the electric field.

  σ is the surface charge density.

  r^ is the unit vector in the direction normal to the charged plane.

  εo is the permittivity of free space.

The resultant electric field at point is E=E1+E2+Eshpere

Calculations:

The resultant electric field at point is E=E1+E2+Eshpere

  E=σ2εor^

Electric field at point 1 due to sphere.

As the point is inside the sphere the electric field is zero.

  Eshpere=0

Electric field at point 1 due to plane 1

Substituting values

  E1=3.0μnC/m22(8.85×1012C2/N.m2)j ^

  E1=(169.4kN/C)j ^

The electric field at point 1 due to plane 2.

  E2=-2.0μnC/m22(8.85×1012C2/N.m2)( i ^)

  E2=(112.9kN/C) i ^

Substituting in the equation

The resultant electric field at point is E=E1+E2+Eshpere

Substituting

  E=(112.9kN/C) i ^ +(169.4kN/C)j ^ +0

  E=(112.9kN/C) i ^ +(169.4kN/C)j ^

The magnitude of the electric field is

   E=(x2+y2)

  E=(112.9kN/C)2+(169.4kN/C)2

  E=203.6kN/C2

Direction:

  θ=tan1(yx)

  θ=tan1(169.4kN/C112.9kN/C)=56.31°

Conclusion:

The electric field E=203.6kN/C pointing at θ=56.3° from the x axis.

b.

To determine

The magnitude and the direction of the electric field at x=2.50m .

The electric field E=263kN/C pointing at θ=153° from the x axis.

Given:

  Physics for Scientists and Engineers, Vol. 1, Chapter 22, Problem 77P , additional homework tip  4

The charges are placed as shown in the figure. The first plane at y=0.6m . The second plane at x=1.0m . The spherical shell centered at the intersection of the planes at point (1.0,-0.6) in the x-y plane.

The surface charge densities are

  σ1=3.0μnC/m2

  σ2=2.0μnC/m2

  σ3=3.0μC/m3

Formula Used:

Electric field

  E=σ2εor^

E is the electric field.

  σ is the surface charge density.

  r^ is the unit vector in the direction normal to the charged plane.

  εo is the permittivity of free space.

The resultant electric field at point is E=E1+E2+Eshpere

Calculations:

The resultant electric field at point is E=E1+E2+Eshpere

  E=σ2εor^

Electric field at point 1 due to sphere.

  E =(kQspherer2)r^ where Q is the charge in the sphere.

Where r^ is a unit vector pointing from (1.0m,-0.6m) to (2.50m,0)

  Qsphere=σAsphere

  =4πσR2

  Qsphere=4π(3.0μC/m2)(1.0m)2

  Qsphere=37.30μC

  r^=0.9285 i ^+0.3714j ^

  Esphere=(8.988×109N.m2/C2)(37.70μC)(1.616m)2r^

  Esphere=(129.8kN/C)(0.9285 i ^+0.3714j ^)

  Esphere=(120.5kN/C) i ^+(-48.22kN/C)j ^

Electric field at point 1 due to plane 1

Substituting values in the formula E=σ2εor^

  E1=3.0μnC/m22(8.85×1012C2/N.m2)j ^

  E1=(169.4kN/C)j ^

The electric field at point 1 due to plane 2.

  E2=-2.0μnC/m22(8.85×1012C2/N.m2)( i ^)

  E2=(112.9kN/C) i ^

Substituting in the equation

The resultant electric field at point is E=E1+E2+Eshpere

Substituting

  E=(112.9kN/C) i ^ +(169.4kN/C)j ^ +(120.5kN/C) i ^+(-48.22kN/C)j ^

  E=(233.5kN/C) i ^ +(121.2kN/C)j ^

The magnitude of the electric field is

  E=(x2+y2)

  E=(233.5kN/C)2+(121.2kN/C)2

  E=263kN/C

Direction:

  θ=tan1(yx)

  θ=tan1(121.2kN/C-233.5kN/C)=153°

Conclusion:

The electric field E=263kN/C pointing at θ=153° from the x axis.

b.

Expert Solution
Check Mark

Answer to Problem 77P

The electric field E=263kN/C pointing at θ=153° from the x axis.

Explanation of Solution

Given:

  Physics for Scientists and Engineers, Vol. 1, Chapter 22, Problem 77P , additional homework tip  5

The charges are placed as shown in the figure. The first plane at y=0.6m . The second plane at x=1.0m . The spherical shell centered at the intersection of the planes at point (1.0,-0.6) in the x-y plane.

The surface charge densities are

  σ1=3.0μnC/m2

  σ2=2.0μnC/m2

  σ3=3.0μC/m3

Formula Used:

Electric field

  E=σ2εor^

E is the electric field.

  σ is the surface charge density.

  r^ is the unit vector in the direction normal to the charged plane.

  εo is the permittivity of free space.

The resultant electric field at point is E=E1+E2+Eshpere

Calculations:

The resultant electric field at point is E=E1+E2+Eshpere

  E=σ2εor^

Electric field at point 1 due to sphere.

  E =(kQspherer2)r^ where Q is the charge in the sphere.

Where r^ is a unit vector pointing from (1.0m,-0.6m) to (2.50m,0)

  Qsphere=σAsphere

  =4πσR2

  Qsphere=4π(3.0μC/m2)(1.0m)2

  Qsphere=37.30μC

  r^=0.9285 i ^+0.3714j ^

  Esphere=(8.988×109N.m2/C2)(37.70μC)(1.616m)2r^

  Esphere=(129.8kN/C)(0.9285 i ^+0.3714j ^)

  Esphere=(120.5kN/C) i ^+(-48.22kN/C)j ^

Electric field at point 1 due to plane 1

Substituting values in the formula E=σ2εor^

  E1=3.0μnC/m22(8.85×1012C2/N.m2)j ^

  E1=(169.4kN/C)j ^

The electric field at point 1 due to plane 2.

  E2=-2.0μnC/m22(8.85×1012C2/N.m2)( i ^)

  E2=(112.9kN/C) i ^

Substituting in the equation

The resultant electric field at point is E=E1+E2+Eshpere

Substituting

  E=(112.9kN/C) i ^ +(169.4kN/C)j ^ +(120.5kN/C) i ^+(-48.22kN/C)j ^

  E=(233.5kN/C) i ^ +(121.2kN/C)j ^

The magnitude of the electric field is

  E=(x2+y2)

  E=(233.5kN/C)2+(121.2kN/C)2

  E=263kN/C

Direction:

  θ=tan1(yx)

  θ=tan1(121.2kN/C-233.5kN/C)=153°

Conclusion:

The electric field E=263kN/C pointing at θ=153° from the x axis.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Defination of voltage
At point A, 3.20 m from a small source of sound that is emitting uniformly in all directions, the intensity level is 58.0 dB. What is the intensity of the sound at A? How far from the source must you go so that the intensity is one-fourth of what it was at A? How far must you go so that the sound level is one-fourth of what it was at A?
Make a plot of the acceleration of a ball that is thrown upward at 20 m/s subject to gravitation alone (no drag). Assume upward is the +y direction (and downward negative y).

Chapter 22 Solutions

Physics for Scientists and Engineers, Vol. 1

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY