
(a)
Interpretation The electronic configuration of
Concept introduction:
Coordination compounds: The compounds having coordination covalent bonds which form when metal ions react with polar molecules or anions
Ligand field theory: It is used to explain the bonding between metal and ligand in a coordination complex. Ligand field theory is explained in terms of electrostatic interaction of between metal ion and ligands.
If the complex has minimum one unpaired electron, then they are paramagnetic and are attracted towards the magnetic field. If all the electrons are paired in a complex, then they are diamagnetic and are repelled from the magnetic field.
Electronic configuration shows the electrons distribution of atoms or molecule in its molecular or atomic orbitals. The electrons are distributed in orbitals by following three important rules, Aufbau's Principle, Pauli-exclusion principle, and Hund's Rule.
The number of moles of any substance can be determined using the equation
Empirical formula: The simplest integer ratio of the element in a chemical formula. It can be obtained by reducing the ratio of elements to the simplest integer form of a molecular formula.
(b)
Interpretation The electronic configuration of
Concept introduction:
Coordination compounds: The compounds having coordination covalent bonds which form when metal ions react with polar molecules or anions
Ligand field theory: It is used to explain the bonding between metal and ligand in a coordination complex. Ligand field theory is explained in terms of electrostatic interaction of between metal ion and ligands.
If the complex has minimum one unpaired electron, then they are paramagnetic and are attracted towards the magnetic field. If all the electrons are paired in a complex, then they are diamagnetic and are repelled from the magnetic field.
Electronic configuration shows the electrons distribution of atoms or molecule in its molecular or atomic orbitals. The electrons are distributed in orbitals by following three important rules, Aufbau's Principle, Pauli-exclusion principle, and Hund's Rule.
The number of moles of any substance can be determined using the equation
Empirical formula: The simplest integer ratio of the element in a chemical formula. It can be obtained by reducing the ratio of elements to the simplest integer form of a molecular formula.
(c)
Interpretation The electronic configuration of
Concept introduction:
Coordination compounds: The compounds having coordination covalent bonds which form when metal ions react with polar molecules or anions
Ligand field theory: It is used to explain the bonding between metal and ligand in a coordination complex. Ligand field theory is explained in terms of electrostatic interaction of between metal ion and ligands.
If the complex has minimum one unpaired electron, then they are paramagnetic and are attracted towards the magnetic field. If all the electrons are paired in a complex, then they are diamagnetic and are repelled from the magnetic field.
Electronic configuration shows the electrons distribution of atoms or molecule in its molecular or atomic orbitals. The electrons are distributed in orbitals by following three important rules, Aufbau's Principle, Pauli-exclusion principle, and Hund's Rule.
The number of moles of any substance can be determined using the equation
Empirical formula: The simplest integer ratio of the element in a chemical formula. It can be obtained by reducing the ratio of elements to the simplest integer form of a molecular formula.

Trending nowThis is a popular solution!

Chapter 22 Solutions
Chemistry & Chemical Reactivity
- HOCH, H HO CH-OH OH H OH 11 CH₂OH F II OH H H 0 + H OHarrow_forwardDraw the mechanism for the formation of diol by starting with one pen and all in... basic conditions then acidic conditions then draw the mechanism for the formation of a carboxylic acid from your product.arrow_forwardDraw the mechanism for the oxidation of 3-bromo-cyclohexan-1-ol.arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning





