(a)
What is the intensity of light exiting the last polarizer?
(a)
Answer to Problem 61P
The intensity of light exiting the last polarizer is
Explanation of Solution
The light is un-polarized at first. When an un-polarized light is passed through a polarizer, its intensity becomes half of the initial.
Write the equation to find the intensity of light from first polarizer.
Here,
Write the equation to find the intensity of light coming from second polarizer.
Here,
Write the equation to find the intensity of light coming from third polarizer.
Here,
Conclusion
Substitute
Substitute
Therefore, The intensity of light exiting the last polarizer is
(b)
What is the intensity of light exiting the last polarizer if the light is incident vertically from left?
(b)
Answer to Problem 61P
The intensity of light exiting the last polarizer is
Explanation of Solution
Here the light has the same polarization as the first ideal polarizer; there will be no change in intensity for light that passes the first polarizer.
Write the equation to find the intensity of light coming from second polarizer.
Write the equation to find the intensity of light coming from third polarizer.
Conclusion:
Substitute
Substitute
Therefore, The intensity of light exiting the last polarizer is
(c)
Can one polarizer be removed from this series of filters so that light incident from the left is not transmitted at all if un-polarized light is incident as in part a? If so, which one should be removed and answer same questions for vertically polarized incident light as in part b.
(c)
Answer to Problem 61P
Yes, polarizer can be removed. In both cases remove the middle polarizer.
Explanation of Solution
In both the cases in part a and part b the light is vertically polarized. The angle of polarization between the first and last polarizers is
Conclusion:
Therefore, yes, polarizer can be removed. In both cases remove the middle polarizer.
(d)
Which polarizer should be removed to maximize the amount of light transmitted in part a?
(d)
Answer to Problem 61P
In case a first polarizer should be removed and in case b last polarizer should be removed.
Explanation of Solution
Consider case a.
Write the equation to find the intensity if the first polarizer is removed.
Write the equation to find the intensity if the last polarizer is removed.
Consider part b.
Write the equation to find the intensity if the first polarizer is removed.
Here,
Write the equation to find the intensity if the last polarizer is removed.
Here,
Conclusion:
Substitute
Substitute
Here for maximum intensity first polarizer should be removed.
Substitute
Substitute
Here for maximum intensity last polarizer shall be removed.
Want to see more full solutions like this?
Chapter 22 Solutions
Physics
- Which of the following best describes how to calculate the average acceleration of any object? Average acceleration is always halfway between the initial acceleration of an object and its final acceleration. Average acceleration is always equal to the change in velocity of an object divided by the time interval. Average acceleration is always equal to the displacement of an object divided by the time interval. Average acceleration is always equal to the change in speed of an object divided by the time interval.arrow_forwardThe figure shows the velocity versus time graph for a car driving on a straight road. Which of the following best describes the acceleration of the car? v (m/s) t(s) The acceleration of the car is negative and decreasing. The acceleration of the car is constant. The acceleration of the car is positive and increasing. The acceleration of the car is positive and decreasing. The acceleration of the car is negative and increasing.arrow_forwardWhich figure could represent the velocity versus time graph of a motorcycle whose speed is increasing? v (m/s) v (m/s) t(s) t(s)arrow_forward
- Unlike speed, velocity is a the statement? Poisition. Direction. Vector. Scalar. quantity. Which one of the following completesarrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answerarrow_forward3.63 • Leaping the River II. A physics professor did daredevil stunts in his spare time. His last stunt was an attempt to jump across a river on a motorcycle (Fig. P3.63). The takeoff ramp was inclined at 53.0°, the river was 40.0 m wide, and the far bank was 15.0 m lower than the top of the ramp. The river itself was 100 m below the ramp. Ignore air resistance. (a) What should his speed have been at the top of the ramp to have just made it to the edge of the far bank? (b) If his speed was only half the value found in part (a), where did he land? Figure P3.63 53.0° 100 m 40.0 m→ 15.0 marrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON