EBK COLLEGE PHYSICS
EBK COLLEGE PHYSICS
10th Edition
ISBN: 8220100853050
Author: Vuille
Publisher: CENGAGE L
bartleby

Concept explainers

Question
Book Icon
Chapter 22, Problem 48AP

(a)

To determine

The maximum value of angle for which the refracted ray will undergo total internal reflection at the left vertical face of the block.

(a)

Expert Solution
Check Mark

Answer to Problem 48AP

For any angle less than equal to 90° will occur the total internal reflection.

Explanation of Solution

The following ray diagram show path of the light.

EBK COLLEGE PHYSICS, Chapter 22, Problem 48AP , additional homework tip  1

Formula to calculate the angle θ3 is,

θ3=sin1(nanp)

  • θ3 is the angle
  • naandnp are the refractive index of air and polystyrene

Substitute 1 for na . 1.49 for np to find θ3 .

θ3=sin1(11.49)=42.2°

Formula to calculate the angle θ2 is,

θ2=(90°θ3)

  • θ2 is the angle

Substitute 42.2° for θ3 to find θ2 .

θ2=(90°42.2°)=47.8°

Formula to calculate the angle θ1 is,

sinθ1=(npsinθ2na)

  • θ1andθ2 are the angle
  • naandnp are the refractive index of air and polystyrene

Substitute 1 for na . 1.49 for np , 47.8° for θ2 to find θ1 .

sinθ1=((1.49)sin(47.8)(1))=1.1

Thus, for any angle less than equal to 90° will occur the total internal reflection.

Conclusion:

Therefore, for any angle less than equal to 90° will occur the total internal reflection.

(b)

To determine

The maximum value of angle for which the refracted ray will undergo total internal reflection at the left vertical face of the block when surrounding is water.

(b)

Expert Solution
Check Mark

Answer to Problem 48AP

For any angle less than equal to 90° will occur the total internal reflection.

Explanation of Solution

The ray diagram is given below:

EBK COLLEGE PHYSICS, Chapter 22, Problem 48AP , additional homework tip  2

Formula to calculate the angle θ3 is,

θ3=sin1(nwnp)

  • θ3 is the angle
  • nwandnp are the refractive index of water and polystyrene

Substitute 1.33 for na . 1.49 for np to find θ3 .

θ3=sin1(1.331.49)=63.5°

Formula to calculate the angle θ2 is,

θ2=(90°θ3)

  • θ2 is the angle

Substitute 63.5° for θ3 to find θ2 .

θ2=(90°63.5°)=26.5°

Formula to calculate the angle θ1 is,

θ1=sin1(npsinθ2nw)

  • θ1andθ2 are the angle
  • nwandnp are the refractive index of water and polystyrene

Substitute 1.33 for nw . 1.49 for np , 26.5° for θ2 to find θ1 .

θ1=sin1((1.49)sin(26.5)(1.33))=29.9°

Thus, for any angle less than equal to 90° will occur the total internal reflection.

Conclusion:

Therefore, for any angle less than equal to 90° will occur the total internal reflection.

(c)

To determine

what will happen when the polystyrene block will immerse in carbon disulfide.

(c)

Expert Solution
Check Mark

Answer to Problem 48AP

When the polystyrene block will immerse in carbon disulfide the total internal reflection will not occur.

Explanation of Solution

The total internal reflection will not occur when the polystyrene block will immerse in carbon disulfide as the refractive index of the polystyrene is less than that of the carbon disulfide.

Conclusion:

Therefore, when the polystyrene block will immerse in carbon disulfide the total internal reflection will not occur.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Your neighbor designs automobiles for a living. You are fascinated with her work. She is designing a new automobile and needs to determine how strong the front suspension should be. She knows of your fascination with her work and your expertise in physics, so she asks you to determine how large the normal force on the front wheels of her design automobile could become under a hard stop, ma when the wheels are locked and the automobile is skidding on the road. She gives you the following information. The mass of the automobile is m₂ = 1.10 × 103 kg and it can carry five passengers of average mass m = 80.0 kg. The front and rear wheels are separated by d = 4.45 m. The center of mass of the car carrying five passengers is dCM = 2.25 m behind the front wheels and hcm = 0.630 m above the roadway. A typical coefficient of kinetic friction between tires and roadway is μk 0.840. (Caution: The braking automobile is not in an inertial reference frame. Enter the magnitude of the force in N.)…
John is pushing his daughter Rachel in a wheelbarrow when it is stopped by a brick 8.00 cm high (see the figure below). The handles make an angle of 0 = 17.5° with the ground. Due to the weight of Rachel and the wheelbarrow, a downward force of 403 N is exerted at the center of the wheel, which has a radius of 16.0 cm. Assume the brick remains fixed and does not slide along the ground. Also assume the force applied by John is directed exactly toward the center of the wheel. (Choose the positive x-axis to be pointing to the right.) (a) What force (in N) must John apply along the handles to just start the wheel over the brick? (No Response) N (b) What is the force (magnitude in kN and direction in degrees clockwise from the -x-axis) that the brick exerts on the wheel just as the wheel begins to lift over the brick? magnitude (No Response) KN direction (No Response) ° clockwise from the -x-axis
An automobile tire is shown in the figure below. The tire is made of rubber with a uniform density of 1.10 × 103 kg/m³. The tire can be modeled as consisting of two flat sidewalls and a tread region. Each of the sidewalls has an inner radius of 16.5 cm and an outer radius of 30.5 cm as shown, and a uniform thickness of 0.600 cm. The tread region can be approximated as having a uniform thickness of 2.50 cm (that is, its inner radius is 30.5 cm and outer radius is 33.0 cm as shown) and a width of 19.2 cm. What is the moment of inertia (in kg. m²) of the tire about an axis perpendicular to the page through its center? 2.18 x Sidewall 33.0 cm 30.5 cm 16.5 cm Tread

Chapter 22 Solutions

EBK COLLEGE PHYSICS

Ch. 22 - In dispersive materials, the angle of refraction...Ch. 22 - The level of water in a clear, colorless glass can...Ch. 22 - Prob. 9CQCh. 22 - Light in medium A undergoes a total internal...Ch. 22 - Prob. 11CQCh. 22 - Try this simple experiment on your own. Take two...Ch. 22 - Prob. 13CQCh. 22 - Prob. 14CQCh. 22 - A light ray containing both blue and red...Ch. 22 - During the Apollo XI Moon landing, a...Ch. 22 - Prob. 2PCh. 22 - Prob. 3PCh. 22 - Prob. 4PCh. 22 - Prob. 5PCh. 22 - Find the speed of light in (a) water, (b) crown...Ch. 22 - A ray of light travels from air into another...Ch. 22 - Prob. 8PCh. 22 - An underwater scuba diver sees the Sun at an...Ch. 22 - Prob. 10PCh. 22 - A laser beam is incident at an angle of 30.0 to...Ch. 22 - Light containing wavelengths of 400. nm, 500. nm,...Ch. 22 - A ray of light is incident on the surface of a...Ch. 22 - Prob. 14PCh. 22 - The light emitted by a helium-neon laser has a...Ch. 22 - Figure P22.16 shows a light ray traveling in a...Ch. 22 - Prob. 17PCh. 22 - A ray of light strikes a flat, 2.00-cm-thick block...Ch. 22 - Prob. 19PCh. 22 - Prob. 20PCh. 22 - A man shines a flashlight from a boat into the...Ch. 22 - A narrow beam of ultra-sonic waves reflects off...Ch. 22 - A person looking into an empty container is able...Ch. 22 - Prob. 24PCh. 22 - Prob. 25PCh. 22 - Prob. 26PCh. 22 - An opaque cylindrical tank with an open top has a...Ch. 22 - A certain kind of glass has an index of refraction...Ch. 22 - The index of refraction for red light in water is...Ch. 22 - The index of refraction for crown glass is 1.512...Ch. 22 - A light beam containing red and violet wavelengths...Ch. 22 - Prob. 32PCh. 22 - A ray of light strikes the midpoint of one face of...Ch. 22 - For light of wavelength 589 nm. calculate the...Ch. 22 - Repeat Problem 34, but this time assume the...Ch. 22 - A beam of light is incident from air on the...Ch. 22 - Prob. 37PCh. 22 - Prob. 38PCh. 22 - A light ray is incident normally to the long face...Ch. 22 - Prob. 40PCh. 22 - A room contains air in which the speed of sound is...Ch. 22 - Prob. 42PCh. 22 - The light beam in Figure P22.43 strikes surface 2...Ch. 22 - Prob. 44PCh. 22 - A layer of ice having parallel sides floats on...Ch. 22 - A ray of light is incident at an angle 30.0 on a...Ch. 22 - When a man stands near the edge of an empty...Ch. 22 - Prob. 48APCh. 22 - Refraction causes objects submerged in water to...Ch. 22 - A narrow beam of light is incident from air onto a...Ch. 22 - Prob. 51APCh. 22 - Endoscopes are medical instruments used to examine...Ch. 22 - A piece of wire is bent through an angle . The...Ch. 22 - Prob. 54APCh. 22 - Prob. 55APCh. 22 - Prob. 56APCh. 22 - Prob. 57APCh. 22 - Students allow a narrow beam of laser light to...Ch. 22 - Prob. 59APCh. 22 - Three sheets of plastic have unknown indices of...Ch. 22 - A person swimming underwater on a bright day and...Ch. 22 - Prob. 62AP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning