21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
6th Edition
ISBN: 9780393874921
Author: PALEN
Publisher: Norton, W. W. & Company, Inc.
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 22, Problem 42QP
(a)
To determine
The energy that would be released when ordinary-matter and antimatter hydrogen atoms annihilated each other.
(b)
To determine
Compare the amount of energy with the energy released by one-megaton hydrogen bomb.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
I. NUCLEAR EQUATION: You are going to write the nuclear equations for the following fusion reactions
responsible for the abundance of lighter nuclei in the universe.
1. Fusion of two Deuterium isotopes to form Helium3
2. Fusion of Deuterium and a neutron to form Tritium
3. Fusion of Deuterium and a proton to form Helium
If Elon Musk landed on a planet made of antimatter, there would be an explosion and
A. the planet would annihilate (i.e. be converted into energy)
B.
an amount of planet matter equal to that of Elon Musk would annihilate (i.e. be converted into energy)
C. Elon Musk would annihilate.
D. Elon Musk and an equal amount of the planet would both annihilate.
K.
Consider the following nuclear decay equation; the half-life of Carbon 14 is 5730 years.
What is name given to the particle represented by
How many neutrons does this isotope of Carbon have?
Chapter 22 Solutions
21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
Ch. 22.1 - Prob. 22.1CYUCh. 22.2 - Prob. 22.2CYUCh. 22.3 - Prob. 22.3CYUCh. 22.4 - Prob. 22.4CYUCh. 22.5 - Prob. 22.5CYUCh. 22 - Prob. 1QPCh. 22 - Prob. 2QPCh. 22 - Prob. 3QPCh. 22 - Prob. 4QPCh. 22 - Prob. 5QP
Ch. 22 - Prob. 6QPCh. 22 - Prob. 7QPCh. 22 - Prob. 8QPCh. 22 - Prob. 9QPCh. 22 - Prob. 10QPCh. 22 - Prob. 11QPCh. 22 - Prob. 12QPCh. 22 - Prob. 13QPCh. 22 - Prob. 14QPCh. 22 - Prob. 15QPCh. 22 - Prob. 16QPCh. 22 - Prob. 17QPCh. 22 - Prob. 18QPCh. 22 - Prob. 19QPCh. 22 - Prob. 20QPCh. 22 - Prob. 21QPCh. 22 - Prob. 22QPCh. 22 - Prob. 24QPCh. 22 - Prob. 28QPCh. 22 - Prob. 29QPCh. 22 - Prob. 31QPCh. 22 - Prob. 32QPCh. 22 - Prob. 33QPCh. 22 - Prob. 34QPCh. 22 - Prob. 35QPCh. 22 - Prob. 36QPCh. 22 - Prob. 37QPCh. 22 - Prob. 38QPCh. 22 - Prob. 39QPCh. 22 - Prob. 40QPCh. 22 - Prob. 41QPCh. 22 - Prob. 42QPCh. 22 - Prob. 43QPCh. 22 - Prob. 44QPCh. 22 - Prob. 45QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Problem 2. The redshift is defined to be the quantity Job – Xem Xem where Aob and Aem are respectively the wavelengths at which radiation is observed and emitted. 1. Find the corresponding definition in terms of observed and emitted frequencies fob and fem. 2. The observed frequency of radio waves from a distant galaxy is 5 GHz. At the location of galaxy, the frequency is 6 GHz. Calculate the redshift of the galaxy. 3. If the galaxy was 500 Mpc away from the Milky way when the radio waves were emitted. How far away is this galaxy today?arrow_forwardIs it A B C or Darrow_forward1. What is escape velocity? 2. What does it mean to have a binding energy? 3. Under what conditions would you have to achieve in order for a satellite to escape the gravitational field of another body? 4. Why don't astronauts feel the effects of gravity while in orbit around Earth? 5. Why don't we feel the physical attraction from people around us, if there is a force of gravity between every obiect containing mass?arrow_forward
- The mass density of our universe is measured to be about 10-29 kg/m3. If an arbitrary point is chosen as the center, how large is the radius of a spherical surface centered at the point so that the mass enclosed in the surface will become a blackhole observed by someone outside the surface? A. 4.2 trillion light years B. 420 billion light years C. 42 billion light years D. 4.2 billion light years Is the answer D? Thanks!arrow_forward1. The current (critical) density of our universe is pe = 10-26kg/m³. Assume the universe is filled with cubes with equal size that each contain one person of m = 100kg. What would the length of the side of such a cube have to be in order to give the correct critical density? How many hydrogen atoms would you need in a box of 1 m³ to reach the critical density? The matter we know, which consists mostly of hydrogen, constitutes only 4.8% of the current critical energy density of our universe. So how many hydrogen atoms are actually in a box of 1 m3 in our universe? Deep space is very empty and a much better vacuum than we can obtain on earth in a laboratory.arrow_forwardB5arrow_forward
- 1. If a proton is moving at very high speed, so that its kinetic energy is much greater than its rest energy (mc²), can it then decay via p →n + n+? 2. What would an “antiatom," made up of the antiparticles to the constituents of normal atoms, consist of? What might happen if antimatter, made of such antiatoms, came in contact with our normal world of matter?arrow_forwardI'm having trouble understanding this. Suppose we have a spaceship about the size of a typical ocean cruise ship today, which means it has a mass of about 130 million kilograms, and we want to accelerate the ship to a speed of 12 % of the speed of light. Suppose you want to generate the energy to get it to cruising speed using matter-antimatter annihilation. How much antimatter would you need to produce and take on the ship? Express your answer using two significant figures.arrow_forwardThe matter density in the Universe today is Pm = -27 kg m-3. What would 2.7 x 10 be the value of the density parameter, 2o, if the Hubble constant had the value Ho = 38 km/s/Mpc? Assume the Universe does not contain dark energy and choose the option below that best matches your answer. Select one: O a. 0.1 O b. 2. О с. 1. O d. 0.7 О е. 0.5arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College