Converting dc to ac. An individual cell such as an egg cell (an ovum, produced in the ovaries) is commonly organized spatially, as manifested in part by asymmetries in the cell membrane These asymmetries include non-uniform distributions of ion transport mechanisms, which result in a net
These cellular currents move in loops through extracellular fluid Ohm s law requires that there be a voltage difference between any two points in this current-carrying fluid surrounding cells Although the currents may be significant, the extracellular voltage differences are tiny—on the order of nanovolts If we can map the voltage differences in the fluid outside a cell, we can calculate the current density by using Ohm s law, assuming that the resistivity of the fluid is known We cannot measure these voltage differences by spacing two electrodes 10 or 20 μm apart because the dc impedance (the resistance) of such electrodes is high and the inherent noise in signals detected at the electrodes far exceeds the cellular voltages.
One successful method of measurement uses an electrode with a ball-shaped end made of platinum that is moved sinusoidally between two points in the fluid outside a cell The electric potential that the electrode measures, with respect to a distant reference electrode, also vanes sinusoidally The dc potential difference between the two extremes (the two points in the fluid) is then converted to a sine-wave ac potential difference The platinum electrode behaves as a capacitor in series with the resistance of the extracellular fluid This resistance, called the access resistance (RA), has a value of about ρ/10a, where ρ is the resistivity of the fluid (usually expressed in ω cm) and a is the radius of the ball electrode The platinum ball typically has a diameter of 20 pm and a capacitance of 10 μm; the resistivity of many biological fluids is 100 ω cm.
42 The signal from the oscillating electrode is fed into an amplifier, which reports the measured voltage as an rms value. 1.5 nV What is the potential difference between the two extremes?
- A. 1.5 nV
- B. 3 0 nV
- C. 2.1 nV
- D. 4 2 nV
Want to see the full answer?
Check out a sample textbook solutionChapter 22 Solutions
College Physics Volume 1 (Chs. 1-16); Mastering Physics with Pearson eText -- ValuePack Access Card -- for College Physics (10th Edition)
Additional Science Textbook Solutions
Microbiology: An Introduction
Anatomy & Physiology (6th Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Campbell Biology: Concepts & Connections (9th Edition)
Human Biology: Concepts and Current Issues (8th Edition)
- 19:39 · C Chegg 1 69% ✓ The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take F=1700 lb. (Figure 1) Figure 800 lb ||-5- F 600 lb بتا D E C BO 10 ft 5 ft 4 ft-—— 6 ft — 5 ft- Solved Part A The compound beam is fixed at E and... Hình ảnh có thể có bản quyền. Tìm hiểu thêm Problem A-12 % Chia sẻ kip 800 lb Truy cập ) D Lưu of C 600 lb |-sa+ 10ft 5ft 4ft6ft D E 5 ft- Trying Cheaa Những kết quả này có hữu ích không? There are pins at C and D To F-1200 Egue!) Chegg Solved The compound b... Có Không ☑ ||| Chegg 10 וחarrow_forwardNo chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardair is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward
- 13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forwardNo chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forward
- Calculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forwardNo chatgpt pls will upvotearrow_forwardCan you help me solve the questions pleasearrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning