Concept explainers
(a)
The minimum incident angle would ray of light undergo total internal reflection.
(a)
Answer to Problem 40P
Explanation of Solution
The ray diagram for the minimum incident angle is given below:
Formula to calculate the minimum incident angle is,
Here,
Substitute
Conclusion:
Therefore, The minimum incident angle would ray of light undergo total internal reflection is
(b)
The minimum incident angle would ray of light undergo total internal reflection if water is placed over the glass.
(b)
Answer to Problem 40P
Explanation of Solution
The ray diagram for the minimum incident angle for the glass water interface is,
Expressing the formula for the critical angle is,
Here,
Formula to calculate the minimum incident angle is,
Here,
Substitute,
Conclusion:
Therefore, The minimum incident angle would ray of light undergo total internal reflection is
(c)
The effect of the thickness of water layer or glass on the minimum incident angle.
(c)
Answer to Problem 40P
Explanation of Solution
Expression for the minimum incident angle is,
Here,
Thus, the minimum incident angle would ray of light undergo total internal reflection does not depend on the thickness of the water layer of glass layer.
Conclusion:
Therefore, the minimum incident angle would ray of light undergo total internal reflection does not depend on the thickness of the water layer of glass layer.
(d)
The effect of the refractive index of the intervening layer on the minimum incident angle.
(d)
Answer to Problem 40P
Explanation of Solution
Expression for the minimum incident angle is,
Here,
Conclusion:
Therefore, the minimum incident angle would ray of light undergo total internal reflection does not depend on the refractive index of the intervening layer.
Want to see more full solutions like this?
Chapter 22 Solutions
COLLEGE PHYSICS,V.2
- No chatgpt pls will upvotearrow_forwardair is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward
- 13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forwardNo chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forward
- Calculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forwardNo chatgpt pls will upvotearrow_forwardCan you help me solve the questions pleasearrow_forward
- Can you help me solve these questions please so i can see how to do itarrow_forwardHow can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning