Predict/Calculate An alpha particle (the nucleus of a helium atom) consists of two protons and two neutrons, and has a mass of 6.64 × 10 −27 kg. A horizontal beam of alpha particles is injected with a speed of 1.3 × 10 5 m/s into a region with a vertical magnetic field of magnitude 0.155 T. (a) How much time does it take for an alpha particle to move halfway through a complete circle? (b) If the speed of the alpha particle is doubled, does the time found in part (a) increase, decrease, or stay the same? Explain. (c) Repeat part (a) for alpha particles with a speed of 2.6 × 10 5 m/s.
Predict/Calculate An alpha particle (the nucleus of a helium atom) consists of two protons and two neutrons, and has a mass of 6.64 × 10 −27 kg. A horizontal beam of alpha particles is injected with a speed of 1.3 × 10 5 m/s into a region with a vertical magnetic field of magnitude 0.155 T. (a) How much time does it take for an alpha particle to move halfway through a complete circle? (b) If the speed of the alpha particle is doubled, does the time found in part (a) increase, decrease, or stay the same? Explain. (c) Repeat part (a) for alpha particles with a speed of 2.6 × 10 5 m/s.
Predict/Calculate An alpha particle (the nucleus of a helium atom) consists of two protons and two neutrons, and has a mass of 6.64 × 10−27 kg. A horizontal beam of alpha particles is injected with a speed of 1.3 × 105 m/s into a region with a vertical magnetic field of magnitude 0.155 T. (a) How much time does it take for an alpha particle to move halfway through a complete circle? (b) If the speed of the alpha particle is doubled, does the time found in part (a) increase, decrease, or stay the same? Explain. (c) Repeat part (a) for alpha particles with a speed of 2.6 × 105 m/s.
A planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).
What are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V)
ammeter
I =
simple diagram to illustrate the setup for each law- coulombs law and biot savart law
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY