Physics, Books a la Carte Edition (5th Edition)
5th Edition
ISBN: 9780134020853
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 22, Problem 22PCE
A 10.2-μC particle with a mass of 2.80 × 10−5 kg moves perpendicular to a 0.850-T magnetic field in a circular path of radius 29.3 m. (a) How fast is the particle moving? (b) How much time will it take for the particle to complete one orbit?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A negative charge, q = -7.2 nC follows a circular path due to the force caused by the magnetic field. If the magnetic field, B = 4.1 T causes charge to follow a radius of r = 3.2 µm, how fast (v = ?), in m/s, does the charge move? The mass of the charge is 5.56 x 10^-22 kg. Disregard any effects caused by special relativity.
1m
A charged particle with mass 2.974 x 10-30 Kg and a kinetic energy of 4 x 10-12 j are
moving in the positive z direction and enter a magnetic field B = 1kT directed
out of the plane of the page and extending from a = 0 to æ = 1.00m as shown in Figure.
The charged particle follows the circular path as shown in the drawing with radius 4m. Ignore
all relativistic effects.
a). Calculate the charge with its sign
d) What is the angular speed of the particle?
Alpha particles of mass 6.68 × 10 ^ -27 kg and charge 3.2 × 10 ^ -19 C are accelerated in a cyclotron in which a magnetic field of 1.25 T is applied perpendicular to the dees (dees is the name given to two electrodes hollow semicircular, as they are D-shaped). With what period should the electric field be reversed between the dees?
A.)5.25 × 10 ^ -8 s
B.)955.25 × 10 ^ -8 s
C.)55.25 × 10 ^ -8 s
D.)575.25 × 10 ^ -8 s
E.) None before and / or after is correct.
Chapter 22 Solutions
Physics, Books a la Carte Edition (5th Edition)
Ch. 22.1 - Is pole 1 in the bar magnet shown in Figure 22-7 a...Ch. 22.2 - Prob. 2EYUCh. 22.3 - A particle orbits in a magnetic field with a...Ch. 22.4 - The following systems consist of a...Ch. 22.5 - Two current-carrying loops are identical, except...Ch. 22.6 - Prob. 6EYUCh. 22.7 - Rank the following solenoids in order of...Ch. 22 - Two charged particles move at right angles to a...Ch. 22 - An electron moves with constant velocity through a...Ch. 22 - An electron moves with constant velocity through a...
Ch. 22 - Describe how the motion of a charged particle can...Ch. 22 - Explain how a charged particle moving in a circle...Ch. 22 - A current-carrying wire is placed in a region with...Ch. 22 - Predict/Explain Proton 1 moves with a speed v from...Ch. 22 - An electron moving in the positive x direction, at...Ch. 22 - Suppose particles A, B, and C in Figure 22-41 have...Ch. 22 - Referring to Figure 22-41, what is the sign of the...Ch. 22 - What is the acceleration of a proton moving with a...Ch. 22 - An electron moves at right angles to a magnetic...Ch. 22 - A negatively charged ion moves due north with a...Ch. 22 - Prob. 8PCECh. 22 - A 0.32-C particle moves with a speed of 16 m/s...Ch. 22 - A particle with a charge of 18C experiences a...Ch. 22 - An ion experiences a magnetic force of 6.2 1016 N...Ch. 22 - An electron moving with a speed of 4.0 105 m/s in...Ch. 22 - Predict/Calculate Two charged particles with...Ch. 22 - A 6.60-C particle moves through a region of space...Ch. 22 - Prob. 15PCECh. 22 - A velocity selector is to be constructed using a...Ch. 22 - Charged particles pass through a velocity selector...Ch. 22 - Prob. 18PCECh. 22 - Find the radius of the orbit when (a) an electron...Ch. 22 - BIO Predict/Calculate The artery in Figure 22-14...Ch. 22 - An electron accelerated from rest through a...Ch. 22 - A 10.2-C particle with a mass of 2.80 105 kg...Ch. 22 - Predict/Calculate When a charged particle enters a...Ch. 22 - A proton with a kinetic energy of 4.6 1016 J...Ch. 22 - Predict/Calculate An alpha particle (the nucleus...Ch. 22 - Prob. 26PCECh. 22 - Helical Motion As a model of the physics of the...Ch. 22 - What is the magnetic force exerted on a 2.35-m...Ch. 22 - A wire with a current of 2.1 A is at an angle of...Ch. 22 - The magnetic force exerted on a 1.2-m segment of...Ch. 22 - A 0.61 -m copper rod with a mass of 0.043 kg...Ch. 22 - The long, thin wire shown in Figure 22-45 is in a...Ch. 22 - A wire with a length of 3.8 m and a mass of 0.65...Ch. 22 - Loudspeaker Force The coil in a loudspeaker has 50...Ch. 22 - A high-voltage power line carries a current of 110...Ch. 22 - Prob. 36PCECh. 22 - For each of the three situations shown in Figure...Ch. 22 - A rectangular loop of 280 turns is 35 cm wide and...Ch. 22 - A single circular loop of radius 0.15 m carries a...Ch. 22 - In the previous problem, find the angle the plane...Ch. 22 - A square loop of wire 0.15 m on a side lies on a...Ch. 22 - Predict/Calculate Each of the 10 turns of wire in...Ch. 22 - Prob. 43PCECh. 22 - How much current must pass through a horizontal...Ch. 22 - You travel to the north magnetic pole of the...Ch. 22 - BIO Pacemaker Switches Some pacemakers employ...Ch. 22 - Two power lines, each 290 m in length, run...Ch. 22 - Predict/Calculate Consider the long, straight,...Ch. 22 - In Oersteds experiment, suppose that the compass...Ch. 22 - Prob. 50PCECh. 22 - Prob. 51PCECh. 22 - A loop of wire is connected to the terminals of a...Ch. 22 - Predict/Explain The number of turns in a solenoid...Ch. 22 - A circular coil of wire has a radius of 7.5 cm and...Ch. 22 - The solenoid for an automobile power door lock is...Ch. 22 - It is desired that a solenoid 25 cm long and with...Ch. 22 - A solenoid that is 72 cm long produces a magnetic...Ch. 22 - The maximum current in a superconducting solenoid...Ch. 22 - To construct a solenoid, you wrap insulated wire...Ch. 22 - CE A proton is to orbit the Earth at the equator...Ch. 22 - CE Figure 22-52 shows an electron beam whose...Ch. 22 - CE The three wires shown in Figure 22-53 are long...Ch. 22 - CE Each of the current-carrying wires in Figure...Ch. 22 - CE The four wires shown in Figure 22-54 are long...Ch. 22 - CE Each of the current-carrying wires in Figure...Ch. 22 - BIO Brain Function and Magnetic Fields Experiments...Ch. 22 - Credit-Card Magnetic Strips Experiments carried...Ch. 22 - Prob. 68GPCh. 22 - Prob. 69GPCh. 22 - CE A positively charged particle moves through a...Ch. 22 - CE A proton follows the path shown in Figure 22-56...Ch. 22 - CE Predict/Explain Suppose the initial speed of...Ch. 22 - BIO Magnetic Resonance Imaging An MRI (magnetic...Ch. 22 - Predict/Calculate A long, straight wire carries a...Ch. 22 - A particle with a charge of C moves with a speed...Ch. 22 - Predict/Calculate A beam of protons with various...Ch. 22 - Prob. 77GPCh. 22 - Repeat Problem 77 for the case where the current...Ch. 22 - Electric Motor A current of 2.4 A flows through a...Ch. 22 - Prob. 80GPCh. 22 - Lightning Bolts A powerful bolt of lightning can...Ch. 22 - Predict/Calculate Consider the two...Ch. 22 - Magnetars The astronomical object 4U014 + 61 has...Ch. 22 - Prob. 84GPCh. 22 - Solenoids produce magnetic fields that are...Ch. 22 - The current in a solenoid with 28 turns per...Ch. 22 - Prob. 87GPCh. 22 - Synchrotron Undulator In one portion of a...Ch. 22 - Predict/Calculate A single current-carrying...Ch. 22 - Prob. 90GPCh. 22 - A solenoid is made from a 25-m length of wire of...Ch. 22 - Magnetic Fields in the Bohr Model In the Bohr...Ch. 22 - A single-turn square loop carries a current of 18...Ch. 22 - Approximating a neuron by a straight wire, what...Ch. 22 - Suppose a neuron in the brain carries a current of...Ch. 22 - A given neuron in the brain carries a current of...Ch. 22 - A SQUID detects a magnetic field of 1.8 1014 T at...Ch. 22 - Predict/Calculate Referring to Example 22-7...Ch. 22 - Predict/Calculate Referring to Example 22-7...Ch. 22 - Referring to Quick Example 22-15 The current I1 is...Ch. 22 - Referring to Quick Example 22-15 The current I2 is...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The following results were obtained from a broth dilution test for microbial susceptibility. Antibiotic Concent...
Microbiology: An Introduction
21. Two shipwreck survivors were rescued from a life raft. One had drunk seawater while the other had not. The...
Introductory Chemistry (6th Edition)
10.71 Identify each of the following as an acid or a base: (10.1)
H2SO4
RbOH
Ca(OH)2
HI
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
The bioremediation process shown in the photograph is used to remove benzene and other hydrocarbons from soil c...
Microbiology: An Introduction
Q1. Which wavelength of light has the highest frequency?
a) 10 nm
b) 10 mm
c) 1 nm
d) 1 mm
Chemistry: A Molecular Approach (4th Edition)
Johnny was vigorously exercising the only joints in the skull that are freely movable. What would you guess he ...
Anatomy & Physiology (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The magnetic field in a cyclotron is 1.25 T, and the maximum orbital radius of the circulating protons is 0.40 m. (a) What is the kinetic energy of the protons when they are ejected from the cyclotron? (b) What Is this energy in MeV? (c) Through what potential difference would a proton have to be accelerated to acquire this kinetic energy? (d) What is the period of tire voltage source used to accelerate the piotons? (e) Repeat tire calculations for alpha-particles.arrow_forwardA spacecraft is in 4 circular orbit of radius equal to 3.0 104 km around a 2.0 1030 kg pulsar. The magnetic field of the pulsar at that radial distance is 1.0 102 T directed perpendicular to the velocity of the spacecraft. The spacecraft is 0.20 km long with a radius of 0.040 km and moves counter-clockwise in the xy-plane around the pulsar. (a) What is the speed of the spacecraft? (b) If the magnetic field points in the positive z-direction, is the emf induced from the back to the front of the spacecraft or from side to side? (c) Compute the induced emf. (d) Describe the hazards for astronauts inside any spacecraft moving in the vicinity of a pulsar.arrow_forwardA proton precesses with a frequency p in the presence of a magnetic field. If the intensity of the magnetic field is doubled, what happens to the precessional frequency?arrow_forward
- An electron of kinetic energy 2000 eV passes between parallel plates that are 1.0 an apart and kept at a potential difference of 300 V. What is the strength of the uniform magnetic field B that will allow the electron to travel undeflected through the plates? Assume E and B are perpendicular.arrow_forwardWhat magnetic field is required in order to confine a proton moving with a speed of 4.0 × 106 m/s to a circular orbit of radius 10 cm?arrow_forwardAt a particular instant an electron is traveling west to east with a kinetic energy of 10 keV. Earth's magnetic field has a horizontal component of 1.8105 T north and a vertical component of 5.0105 T down. (a) What is the path of the election? (b) What is the radius of curvature of the path?arrow_forward
- Q. 3: A proton moves through a uniform magnetic field given by B = (30 î – 205) mT. At a time t1, the proton has a velocity given by = the proton is FB (Vz î + (2000m/s)ĵ) and the magnetic force of (4 * 10-17N) k. At that instant, what is the velocity vx?arrow_forwardA particle with a charge -1.24X10^-8 C is moving with instantaneous velocity v=(4.19x10^4 m/s)i + (-3.85 x10^4m/s)j. What is the force (magnitude and direction) exerted on this particle by a magnetic field (1.40T)k?arrow_forwardThe magnetic poles of a small cyclotron produce a magnetic field with magnitude 0.85 T. The poles have a radius of 0.40 m, which is the maximum radius of the orbits of the accelerated particles. (a) What is the maximum energy to which protons (q = 1.60 * 10-19 C, m = 1.67 * 10-27 kg) can be accelerated by this cyclotron? Give your answer in electron volts and in joules. (b) What is the time for one revolution of a proton orbiting at this maximum radius? (c) What would the magnetic-field magnitude have to be for the maximum energy to which a proton can be accelerated to be twice that calculated in part (a)? (d) For B = 0.85 T, what is the maximum energy to which alpha particles (q = 3.20 * 10-19 C, m = 6.64 * 10-27 kg) can be accelerated by this cyclotron? How does this compare to the maximum energy for protons?arrow_forward
- Ionization measurements show that a particular lightweight nuclear particle carries a double charge (= 2e) and is moving with a speed of 0.710c. Its measured radius of curvature in a magnetic field of 1.00 T is 6.28 m. Find the mass of the particle and identify it. (Hints: Lightweight nuclear particles are made up of neutrons (which have no charge) and protons (charge =+e), in roughly equal numbers. Take the mass of each such particle to be 1.00 u.arrow_forwardSome charged particle travels at a constant speed of 12e5 m/s to the right into a magnetic field of strength 1.7 T pointed out of the page. This causes the particle to start traveling in a circular arc of radius 0.315 m. What is the charge to mass ratio (q/m) of this particle 5.23e5 C/kg None of the above 2.24e6 C/kg 2.99e6 C/kg 7.47e5 C/kgarrow_forwardA particle with a charge of 7.4 nC is moving in a uniform magnetic field of B=(2.45 T)k. The magnetic force on the particle is measured to be: F=-(4.02 × 10-N)-(7.6x107N)Î. (a) Calculate the x component of the velocity (in m/s) of the particle (b) Calculate the y component of the velocity (in m/s) of the particlearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY