University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 22, Problem 22.8E
The three small spheres shown in Fig. E22.8 carry charges q1 = 4.00 nC, q2 = −7.80 nC, and q3 = 2.40 nC. Find the net electric flux through each of the following closed surfaces shown in cross section in the figure: (a) S1; (b) S2; (c) S3 (d) S4; (e) S5. (f) Do your answers to parts (a)–(e) depend on how the charge is distributed over each small sphere? Why or why not?
Figure E22.8
Expert Solution & Answer
Learn your wayIncludes step-by-step video
schedule06:17
Students have asked these similar questions
A charge of 2.5 uC (micro-Coulombs) is distributed evenly along a rod of length 6m. If the rod is bent into a circular arc with
a radius of curvature of 2.4m, what is the magnitude of the electric field at the centre of curvature? Use units of N/C.
ring-shaped conductor with radius a = 2.50 cm has a total positive charge Q = +0.125 nC uniformly distributed around it. The center of the ring is at the origin of coordinates O. (a) What is the electric field (magnitude and direction) at point P, which is on the x-axis at x = 40.0 cm? (b) A point charge Q = -2.50 ?C is placed at point P. What are the magnitude and direction of the force exerted by the charge q on the ring?
d
00
=
A semicircular wire of radius R is uniformly charged with Q₁ -0.3Q and located in a two dimensional coordinate system as
shown in the figure. A point charge Q2-9Q is placed at 0.36 R on the y-axis. Determine the electric field at point o in terms
of kQ/R2F where f is the unit vector. Take mt=3.14 and provide your answer with two decimal places
Answer:
Q₁
Q₂ R
0
Chapter 22 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 22.1 - If all of the dimensions of the box in Fig. 22.2a...Ch. 22.2 - Rank the following surfaces in order from most...Ch. 22.3 - Figure 22.16 shows six point charges that all lie...Ch. 22.4 - You place a known amount of charge Q on the...Ch. 22.5 - A hollow conducting sphere has no net charge....Ch. 22 - A rubber balloon has a single point charge in its...Ch. 22 - Suppose that in Fig. 22.15 both charges were...Ch. 22 - In Fig. 22.15, suppose a third point charge were...Ch. 22 - A certain region of space bounded by an imaginary...Ch. 22 - A spherical Gaussian surface encloses a point...
Ch. 22 - You find a sealed box on your doorstep. You...Ch. 22 - A solid copper sphere has a net positive charge....Ch. 22 - A spherical Gaussian surface encloses a point...Ch. 22 - In a conductor, one or more electrons from each...Ch. 22 - You charge up the Van de Graaff generator shown in...Ch. 22 - Lightning is a flow of electrons. The lightning...Ch. 22 - A solid conductor has a cavity in its interior....Ch. 22 - Explain this statement: In a static situation, the...Ch. 22 - In a certain region of space, the electric field E...Ch. 22 - (a) In a certain region of space, the volume...Ch. 22 - A negative charge Q is placed inside the cavity of...Ch. 22 - A flat sheet of paper of area 0.250 m2 is oriented...Ch. 22 - A flat sheet is in the shape of a rectangle with...Ch. 22 - You measure an electric field of 1.25 106 N/C at...Ch. 22 - It was shown in Example 21.10 (Section 21.5) that...Ch. 22 - A hemispherical surface with radius r in a region...Ch. 22 - The cube in Fig. E22.6 has sides of length L =...Ch. 22 - BIO As discussed in Section 22.5, human nerve...Ch. 22 - The three small spheres shown in Fig. E22.8 carry...Ch. 22 - A charged paint is spread in a very thin uniform...Ch. 22 - A point charge q1 = 4.00 nC is located on the...Ch. 22 - A 6.20 C point charge is at the center of a cube...Ch. 22 - Electric Fields in an Atom. The nuclei of large...Ch. 22 - Two very long uniform lines of charge are parallel...Ch. 22 - A solid metal sphere with radius 0.450 m carries a...Ch. 22 - How many excess electrons must be added to an...Ch. 22 - Some planetary scientists have suggested that the...Ch. 22 - A very long uniform line of charge has charge per...Ch. 22 - The electric field 0.400 m from a very long...Ch. 22 - A hollow, conducting sphere with an outer radius...Ch. 22 - (a) At a distance of 0.200 cm from the center or a...Ch. 22 - The electric field at a distance of 0.145 m from...Ch. 22 - A point charge of 3.00 C is located in the center...Ch. 22 - CP An electron is released from rest at a distance...Ch. 22 - Charge Q is distributed uniformly throughout the...Ch. 22 - A conductor with an inner cavity, like that shown...Ch. 22 - A very large, horizontal, nonconducting sheet of...Ch. 22 - Apply Gausss law to the Gaussian surfaces S2, S3,...Ch. 22 - A square insulating sheet 80.0 cm on a side is...Ch. 22 - An infinitely long cylindrical conductor has...Ch. 22 - Two very large, nonconducting plastic sheets, each...Ch. 22 - CP At time t = 0 a proton is a distance of 0.360 m...Ch. 22 - CP A very small object with mass 8.20 109 kg and...Ch. 22 - CP A small sphere with mass 4.00 106 kg and...Ch. 22 - A cube has sides of length L = 0.300 m. One corner...Ch. 22 - The electric field E in Fig. P22.35 is everywhere...Ch. 22 - CALC In a region of space there is an electric...Ch. 22 - The electric field E1 at one face of a...Ch. 22 - A long line carrying a uniform linear charge...Ch. 22 - The Coaxial Cable. A long coaxial cable consists...Ch. 22 - A very long conducting tube (hollow cylinder) has...Ch. 22 - A very long, solid cylinder with radius R has...Ch. 22 - A Sphere in a Sphere. A solid conducting sphere...Ch. 22 - A solid conducting sphere with radius R that...Ch. 22 - A conducting spherical shell with inner radius a...Ch. 22 - Concentric Spherical Shells. A small conducting...Ch. 22 - Repeat Problem 22.45, but now let the outer shell...Ch. 22 - Prob. 22.47PCh. 22 - A solid conducting sphere with radius R carries a...Ch. 22 - CALC An insulating hollow sphere has inner radius...Ch. 22 - CP Thomsons Model of the Atom. Early in the 20th...Ch. 22 - Thomsons Model of the Atom, Continued. Using...Ch. 22 - (a) How many excess electrons must be distributed...Ch. 22 - CALC A nonuniform, but spherically symmetric,...Ch. 22 - A Uniformly Charged Slab. A slab of insulating...Ch. 22 - CALC A Nonuniformly Charged Slab. Repeat Problem...Ch. 22 - CALC A nonuniform, but spherically symmetric,...Ch. 22 - (a) An insulating sphere with radius a has a...Ch. 22 - A very long, solid insulating cylinder has radius...Ch. 22 - DATA In one experiment the electric field is...Ch. 22 - DATA The electric field is measured for points at...Ch. 22 - DATA The volume charge density for a spherical...Ch. 22 - CP CALC A region in space contains a total...Ch. 22 - Suppose that to repel electrons in the radiation...Ch. 22 - What is the magnitude of E just outside the...Ch. 22 - SPACE RADIATION SHIELDING. One of the hazards...Ch. 22 - SPACE RADIATION SHIELDING. One of the hazards...
Additional Science Textbook Solutions
Find more solutions based on key concepts
27. * A car moves around a 50-m-radius highway curve. The road, banked at relative to the horizontal, is wet a...
College Physics
Rank the magnitudes of all the horizontal forces on your diagrams. If any of the horizontal forces have the sam...
Tutorials in Introductory Physics
What happens to the volume of the thoracic cavity when you inhale? What about when you exhale?
Conceptual Integrated Science
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective
Whether the mirror is concave or convex.
Physics (5th Edition)
Express the unit vectors in terms of (that is, derive Eq. 1.64). Check your answers several ways Also work o...
Introduction to Electrodynamics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A solid conducting sphere of radius 2.00 cm has a charge 8.00 μC. A conducting spherical shell of inner radius 4.00 cm and outer radius 5.00 cm is concentric with the solid sphere and has a total charge −4.00 μC. Find the electric field at (a) r = 1.00 cm, (b) r = 3.00 cm, (c) r = 4.50 cm, and (d) r = 7.00 cm from the center of this charge configuration.arrow_forwardCharges of 3.00 nC, 2.00 nC, 7.00 nC, and 1.00 nC are contained inside a rectangular box with length 1.00 m, width 2.00 m, and height 2.50 m. Outside the box are charges of 1.00 nC and 4.00 nC. What is the electric flux through the surface of the box? (a) 0 (b) 5.64 102 N m2/C (c) 1.47 103 N m2/C (d) 1.47 103 N m2/C (e) 5.64 102 N m2/Carrow_forwardThe electric field 10.0 cm from the surface of a copper ball of radius 5.0 cm is directed toward the ball's center and has magnitude 4.0102 N/C. How much charge is on the surface of the ball?arrow_forward
- Two solid spheres, both of radius 5 cm, carry identical total charges of 2 C. Sphere A is a good conductor. Sphere B is an insulator, and its charge is distributed uniformly throughout its volume. (i) How do the magnitudes of the electric fields they separately create at a radial distance of 6 cm compare? (a) EA EB = 0 (b) EA EB 0 (c) EA = EB 0 (d) 0 EA EB (e) 0 = EA EB (ii) How do the magnitudes of the electric fields they separately create at radius 4 cm compare? Choose from the same possibilities as in part (i).arrow_forwardA positively charged particle is held at the center of a spherical shell. The figure gives the magnitude E of the electric field versus radial distance r. The scale of the vertical axis is set by Es = 11.0 × 107 N/C. Approximately, what is the net charge on the shell? Assume rs = 1 cm. Number i E (107 N/C) E 0 Units r's 2rs r (cm) I 3rs 4rs 5rsarrow_forwardA thin rod carries linear charge density according to the distribution X(z) = Aox/L, where Xo = 29.7 nC/cm and L is the length of the rod. The rod extends from x = 0 cm tc I=28 cm. What is the magnitude of the electric field at a location = 6.0 cm? (please provide your answer in kN/C to 1 decimal place) Type your answer.....arrow_forward
- Q. A 5.0 nC point charge is embedded at the center of a nonconducting sphere (radius 2.0 cm) which has a charge of-8 nC distributed uniformly throughout its volume. What is the magnitude of electric field (in N/C) at a point that is 1.0 cm from the center of the sphere? A B D E 1.8x10 0.9x10 3.6x10* | 2.7x10° 7.2x10sarrow_forwardA solid insulating sphere of radius 0.06 cm carries a total charge of 30 nC. OConcentric with this sphere is a conducting spherical shell with an inner radius of 0.13 cm and an outer radius of 0.17 cm and carrying a total charge of -15 nC. Find the magnitude of the electric field at r = 0.20 cm from the center of the two spheres and shell. N O 2.157æ103 N O 2.157x106 N C O 2.157x10° ANarrow_forwardI need help answering the attached question.arrow_forward
- A very thin rod made of an insulating material has a linear charge density of 41.0 nC/m. It lies along the line y=-15.0 cm, with one endpoint at x = 0 and the other at x = 40.0 cm. What is the electric field at the origin due to this rod? (Enter the magnitude in N/C and the direction in degrees counterclockwise from the +x-axis.) magnitude direction N/C counterclockwise from the +x-axisarrow_forwarde 9:06 52% ll O ODI 口 اختبار المد فيزياء عام. . . Imssb1.mutah.edu.jo An infinite line carries a linear uniform charge density of 14.7 nC/m). Determine the magnitude of the electric field ( in units of kN/C) at a distance of 5.0 cm from the line. Select one: A. 2.65 B. 5.29 C. 105.84 D. 5.73 E. 52.92 Previous page Oarrow_forwardChapter 22, Problem 032 Your answer is partially correct. Try again. In the figure positive charge q = 8.50 pC is spread uniformly along a thin nonconducting rod of length L 14.0 cm, what are the (a) x-and (b) y- components of the electric field produced at point P, at distance R = 6.00 cm from the rod along its perpendicular bisector? Units (a) Number N/C or V/m UnitsT N/C or V/marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY