Chemistry
13th Edition
ISBN: 9781259911156
Author: Raymond Chang Dr., Jason Overby Professor
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 22, Problem 22.82QP
Interpretation Introduction
Interpretation:
The reason for hydrogen chloride formation from the reaction of sulfuric acid with sodium chloride has to be given.
Concept introduction:
Le Chatelier’s principle:
This principle states that if a system in equilibrium gets disturbed due to modification of concentration, temperature, volume, and pressure, then it reset to counteract the effect of disturbance.
To give: The reason for hydrogen chloride formation from the reaction of sulfuric acid with sodium chloride
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Can the target compound be efficiently synthesized in good yield from the substituted benzene of the starting material?
If yes, draw the synthesis. Include all steps and all reactants.
This is a synthesis question. Why is this method wrong or worse than the "correct" method? You could do it thiss way, couldn't you?
Try: Draw the best Lewis structure showing all non-bonding electrons and all formal charges if
any:
(CH3)3CCNO
NCO-
HN3
[CH3OH2]*
Chapter 22 Solutions
Chemistry
Ch. 22 - Prob. 22.1QPCh. 22 - Prob. 22.2QPCh. 22 - Prob. 22.3QPCh. 22 - Carbon is usually classified as a nonmetal....Ch. 22 - Prob. 22.5QPCh. 22 - Describe two laboratory and two industrial...Ch. 22 - Prob. 22.7QPCh. 22 - Prob. 22.8QPCh. 22 - Prob. 22.9QPCh. 22 - Describe what is meant by the hydrogen economy.
Ch. 22 - Elements number 17 and 20 form compounds with...Ch. 22 - Give an example of hydrogen as (a) an oxidizing...Ch. 22 - Prob. 22.13QPCh. 22 - Prob. 22.14QPCh. 22 - Prob. 22.15QPCh. 22 - Prob. 22.16QPCh. 22 - Prob. 22.17QPCh. 22 - Starting with H2, describe how you would prepare...Ch. 22 - Give an example of a carbide and a cyanide.Ch. 22 - How are cyanide ions used in metallurgy?Ch. 22 - Briefly discuss the preparation and properties of...Ch. 22 - Prob. 22.22QPCh. 22 - Prob. 22.23QPCh. 22 - Describe two chemical differences between CO and...Ch. 22 - Describe the reaction between CO2 and OH in terms...Ch. 22 - Prob. 22.26QPCh. 22 - Prob. 22.27QPCh. 22 - Prob. 22.28QPCh. 22 - Prob. 22.29QPCh. 22 - Magnesium chloride is dissolved in a solution...Ch. 22 - Prob. 22.31QPCh. 22 - Prob. 22.32QPCh. 22 - A piece of red-hot magnesium ribbon will continue...Ch. 22 - Prob. 22.34QPCh. 22 - Describe a laboratory and an industrial...Ch. 22 - Prob. 22.36QPCh. 22 - Prob. 22.37QPCh. 22 - Prob. 22.38QPCh. 22 - Prob. 22.39QPCh. 22 - Prob. 22.40QPCh. 22 - Prob. 22.41QPCh. 22 - Write a balanced equation for the formation of...Ch. 22 - Prob. 22.43QPCh. 22 - At 620 K the vapor density of ammonium chloride...Ch. 22 - Prob. 22.45QPCh. 22 - Prob. 22.46QPCh. 22 - Write a balanced equation for each of the...Ch. 22 - Prob. 22.48QPCh. 22 - Prob. 22.49QPCh. 22 - Predict the geometry of nitrous oxide, N2O, by the...Ch. 22 - Consider the reaction N2(g)+O2(g)2NO(g) Given that...Ch. 22 - From the data in Appendix 2, calculate H for the...Ch. 22 - Prob. 22.53QPCh. 22 - Prob. 22.54QPCh. 22 - Prob. 22.55QPCh. 22 - Prob. 22.56QPCh. 22 - Prob. 22.57QPCh. 22 - Prob. 22.58QPCh. 22 - Describe one industrial and one laboratory...Ch. 22 - Prob. 22.60QPCh. 22 - Prob. 22.61QPCh. 22 - Prob. 22.62QPCh. 22 - Describe the contact process for the production of...Ch. 22 - Prob. 22.64QPCh. 22 - Prob. 22.65QPCh. 22 - One of the steps involved in the depletion of...Ch. 22 - Hydrogen peroxide is unstable and decomposes...Ch. 22 - What are the oxidation numbers of O and F in HFO?Ch. 22 - Prob. 22.69QPCh. 22 - In 2008, about 48 million tons of sulfuric acid...Ch. 22 - Prob. 22.71QPCh. 22 - Prob. 22.72QPCh. 22 - Prob. 22.73QPCh. 22 - Prob. 22.74QPCh. 22 - Prob. 22.75QPCh. 22 - Prob. 22.76QPCh. 22 - Describe two reactions in which sulfuric acid acts...Ch. 22 - Prob. 22.78QPCh. 22 - Prob. 22.79QPCh. 22 - Prob. 22.80QPCh. 22 - Prob. 22.81QPCh. 22 - Prob. 22.82QPCh. 22 - Prob. 22.83QPCh. 22 - Prob. 22.84QPCh. 22 - Prob. 22.85QPCh. 22 - Hydrogen fluoride can be prepared by the action of...Ch. 22 - Prob. 22.87QPCh. 22 - Prob. 22.88QPCh. 22 - Use the VSEPR method to predict the geometries of...Ch. 22 - Iodine pentoxide, I2O5, is sometimes used to...Ch. 22 - Prob. 22.91QPCh. 22 - Prob. 22.92QPCh. 22 - Prob. 22.93QPCh. 22 - What is the change in oxidation number for the...Ch. 22 - Prob. 22.95QPCh. 22 - Prob. 22.96QPCh. 22 - Prob. 22.97QPCh. 22 - Consider the Frasch process. (a) How is it...Ch. 22 - Predict the physical and chemical properties of...Ch. 22 - Prob. 22.100QPCh. 22 - Prob. 22.101QPCh. 22 - Life evolves to adapt to its environment. In this...Ch. 22 - Prob. 22.103QPCh. 22 - As we saw in Section 21.2, the reduction of iron...Ch. 22 - Assuming ideal behavior, calculate the density of...Ch. 22 - A 10.0-g sample of white phosphorus was burned in...
Knowledge Booster
Similar questions
- What are the major products of the following reaction? Draw all the major products. If there are no major products, then there is no reaction that will take place. Use wedge and dash bonds when necessary.arrow_forwardZeolites. State their composition and structure. Give an example.arrow_forwardDon't used hand raiting and show all reactionsarrow_forward
- Don't used hand raiting and don't used Ai solutionarrow_forwardIX) By writing the appropriate electron configurations and orbital box diagrams briefly EXPLAIN in your own words each one of the following questions: a) The bond length of the Br2 molecule is 2.28 Å, while the bond length of the compound KBr is 3.34 Å. The radius of K✶ is 1.52 Å. Determine the atomic radius in Å of the bromine atom and of the bromide ion. Br = Br b) Explain why there is a large difference in the atomic sizes or radius of the two (Br and Br). Tarrow_forwardWhen 15.00 mL of 3.00 M NaOH was mixed in a calorimeter with 12.80 mL of 3.00 M HCl, both initially at room temperature (22.00 C), the temperature increased to 29.30 C. The resultant salt solution had a mass of 27.80 g and a specific heat capacity of 3.74 J/Kg. What is heat capacity of the calorimeter (in J/C)? Note: The molar enthalpy of neutralization per mole of HCl is -55.84 kJ/mol.arrow_forward
- When 15.00 mL of 3.00 M NaOH was mixed in a calorimeter with 12.80 mL of 3.00 M HCl, both initially at room temperature (22.00 C), the temperature increased to 29.30 C. The resultant salt solution had a mass of 27.80 g and a specific heat capacity of 3.74 J/Kg. What is heat capacity of the calorimeter (in J/C)? Note: The molar enthalpy of neutralization per mole of HCl is -55.84 kJ/mol. Which experimental number must be initialled by the Lab TA for the first run of Part 1 of the experiment? a) the heat capacity of the calorimeter b) Mass of sample c) Ti d) The molarity of the HCl e) Tfarrow_forwardPredict products for the Following organic rxn/s by writing the structurels of the correct products. Write above the line provided" your answer D2 ①CH3(CH2) 5 CH3 + D₂ (adequate)" + 2 mited) 19 Spark Spark por every item. 4 CH 3 11 3 CH 3 (CH2) 4 C-H + CH3OH CH2 CH3 + CH3 CH2OH 0 CH3 fou + KMnDy→ C43 + 2 KMn Dy→→ C-OH ") 0 C-OH 1110 (4.) 9+3 =C CH3 + HNO 3 0 + Heat> + CH3 C-OH + Heat CH2CH3 - 3 2 + D Heat H 3 CH 3 CH₂ CH₂ C = CH + 2 H₂ → 2 2arrow_forwardWhen 15.00 mL of 3.00 M NaOH was mixed in a calorimeter with 12.80 mL of 3.00 M HCl, both initially at room temperature (22.00 C), the temperature increased to 29.30 C. The resultant salt solution had a mass of 27.80 g and a specific heat capacity of 3.74 J/Kg. What is heat capacity of the calorimeter (in J/C)? Note: The molar enthalpy of neutralization per mole of HCl is -55.84 kJ/mol.arrow_forward
- Q6: Using acetic acid as the acid, write the balanced chemical equation for the protonation of the two bases shown (on the -NH2). Include curved arrows to show the mechanism. O₂N- O₂N. -NH2 -NH2 a) Which of the two Bronsted bases above is the stronger base? Why? b) Identify the conjugate acids and conjugate bases for the reactants. c) Identify the Lewis acids and bases in the reactions.arrow_forwardQ5: For the two reactions below: a) Use curved electron-pushing arrows to show the mechanism for the reaction in the forward direction. Redraw the compounds to explicitly illustrate all bonds that are broken and all bonds that are formed. b) Label Bronsted acids and bases in the left side of the reactions. c) For reaction A, which anionic species is the weakest base? Which neutral compound is the stronger acid? Is the forward or reverse reaction favored? d) Label Lewis acids and bases, nucleophiles and electrophiles in the left side of the reactions. A. 용 CH3OH я хон CH3O OH B. HBr CH3ONa NaBr CH3OHarrow_forwardpotential energy Br b) Translate the Newman projection below to its wedge-and-dash drawing. F H. OH CH3 CI c) Isopentane (2-methylbutane) is a compound containing a branched carbon chain. Draw a Newman projection of six conformations about the C2-C3 bond of isopentane. On the curve of potential energy versus angle of internal rotation for isopentane, label each energy maximum and minimum with one of the conformations. 0° 。 F A B D C angle of internal rotation E F 360° (=0°) JDownlarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning