
Concept explainers
(a)
Interpretation:
The reaction catalyzed by enzyme citrate synthase has to be described.
Concept Introduction:
The enzymes are essentially the biocatalysts present in all living systems. Each enzyme catalyzes a characteristic reaction within the biological system. Enzymes are generally named in accordance with the substrate on which they act. For example, enzyme urease is named by the addition of the suffix–ase to the name of the substrate urea on which this enzyme acts. Similarly, the enzyme sucrase derives its name from sucrose as it hydrolyzes the linkages of sucrose to yield fructose and glucose monomers of disaccharide sucrose.
Based on their specific role and the specific reaction they catalyze enzymes are classified into six major classes. These are as follows:
- Ligases: The enzymes that connect two molecules via covalent bonds are termed as ligases. DNA ligase is one such enzyme.
- Isomerases: The enzymes that catalyze the isomerization reactions are termed as isomerases. For example, triosephosphate isomerase.
- Lyases: The enzymes that catalyze the cleavage of bonds are called lyases. Enzyme fumarase belongs to this category as they cleave the carbon-oxygen bond of malate to convert it reversibly into fumarate.
- Hydrolases: These enzymes catalyze the cleavage of bonds via hydrolysis present in biological systems. Lipase is one such enzyme.
- Transferases: These enzymes are involved in the transfer of various
functional groups such as methyl, acetyl group, or phosphate group. Alanine transaminase is one such enzyme. - Oxidoreductases: As the name suggests, these catalyze the
oxidation and reduction reactions that occur in living systems. Succinate dehydrogenase is an example of oxidoreductase.
(b)
Interpretation:
The reaction catalyzed by enzyme aconitase has to be described.
Concept Introduction:
Refer to part (a)
(c)
Interpretation:
The reaction catalyzed by enzyme isocitrate dehydrogenase has to be described.
Concept Introduction:
Refer to part (a)
(d)
Interpretation:
The reaction catalyzed by enzyme
Concept Introduction:
Refer to part (a)
(e)
Interpretation:
The reaction catalyzed by enzyme succinyl CoA synthase has to be described.
Concept Introduction:
Refer to part (a)
(f)
Interpretation:
The reaction catalyzed by enzyme succinate dehydrogenase has to be described.
Concept Introduction:
Refer to part (a)
(g)
Interpretation:
The reaction catalyzed by enzyme fumarase has to be described.
Concept Introduction:
Refer to part (a)
(h)
Interpretation:
The reaction catalyzed by enzyme malate has to be described.
Concept Introduction:
Refer to part (a)

Want to see the full answer?
Check out a sample textbook solution
Chapter 22 Solutions
General, Organic, and Biochemistry
- In methyl orange preparation, if the reaction started with 0.5 mole of sulfanilic acid to form the diazonium salt of this compound and then it converted to methyl orange [0.2 mole]. If the efficiency of the second step was 50%, Calculate: A. Equation(s) of Methyl Orange synthesis: Diazotization and coupling reactions. B. How much diazonium salt was formed in this reaction? C. The efficiency percentage of the diazotization reaction D. Efficiency percentage of the whole reaction.arrow_forwardHand written equations pleasearrow_forwardHand written equations pleasearrow_forward
- > each pair of substrates below, choose the one that will react faster in a substitution reaction, assuming that: 1. the rate of substitution doesn't depend on nucleophile concentration and 2. the products are a roughly 50/50 mixture of enantiomers. Substrate A Substrate B Faster Rate X Ś CI (Choose one) (Choose one) CI Br Explanation Check Br (Choose one) © 2025 McGraw Hill LLC. All Rights Farrow_forwardNMR spectrum of ethyl acetate has signals whose chemical shifts are indicated below. Which hydrogen or set of hydrogens corresponds to the signal at 4.1 ppm? Select the single best answer. The H O HỌC—C—0—CH, CH, 2 A ethyl acetate H NMR: 1.3 ppm, 2.0 ppm, 4.1 ppm Check OA B OC ch B C Save For Later Submit Ass © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center |arrow_forwardHow many signals do you expect in the H NMR spectrum for this molecule? Br Br Write the answer below. Also, in each of the drawing areas below is a copy of the molecule, with Hs shown. In each copy, one of the H atoms is colored red. Highlight in red all other H atoms that would contribute to the same signal as the H already highlighted red Note for advanced students: In this question, any multiplet is counted as one signal. 1 Number of signals in the 'H NMR spectrum. For the molecule in the top drawing area, highlight in red any other H atoms that will contribute to the same signal as the H atom already highlighted red. If no other H atoms will contribute, check the box at right. Check For the molecule in the bottom drawing area, highlight in red any other H atoms that will contribute to the same signal as the H atom already highlighted red. If no other H atoms will contribute, check the box at right. O ✓ No additional Hs to color in top molecule ง No additional Hs to color in bottom…arrow_forward
- in the kinetics experiment, what were the values calculated? Select all that apply.a) equilibrium constantb) pHc) order of reactiond) rate contstantarrow_forwardtrue or false, given that a 20.00 mL sample of NaOH took 24.15 mL of 0.141 M HCI to reach the endpoint in a titration, the concentration of the NaOH is 1.17 M.arrow_forwardin the bromothymol blue experiment, pKa was measured. A closely related compound has a Ka of 2.10 x 10-5. What is the pKa?a) 7.1b) 4.7c) 2.0arrow_forward
- calculate the equilibrium concentration of H2 given that K= 0.017 at a constant temperature for this reaction. The inital concentration of HBr is 0.050 M.2HBr(g) ↔ H2(g) + Br2(g)a) 4.48 x 10-2 M b) 5.17 x 10-3 Mc) 1.03 x 10-2 Md) 1.70 x 10-2 Marrow_forwardtrue or falsegiven these two equilibria with their equilibrium constants:H2(g) + CI2(l) ↔ 2HCI(g) K= 0.006 CI2(l) ↔ CI2(g) K= 0.30The equilibrium contstant for the following reaction is 1.8H2(g) + CI2 ↔ 2HCI(g)arrow_forwardI2(g) + CI2(g) ↔ 2ICIK for this reaction is 81.9. Find the equilibrium concentration of I2 if the inital concentration of I2 and CI2 are 0.010 Marrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





