
Modified Mastering Physics with Pearson eText -- Access Card -- for College Physics: Explore and Apply (18-Weeks)
2nd Edition
ISBN: 9780136781158
Author: Eugenia Etkina, Gorazd Planinsic
Publisher: Pearson Education (US)
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 22, Problem 14P
To determine
The reason why few apartment buildings appear bright and the rest are black when driving outside on a sunny day. Explain the difference with the ray diagram.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
(a) Calculate the number of electrons in a small, electrically neutral silver pin that has a mass of 13.0 g. Silver has 47 electrons per atom, and its molar mass is 107.87 g/mol.
8
Two moving charged particles exert forces on each other because each creates a magnetic field that acts
on the other. These two "Lorentz" forces are proportional to vix (2 xr) and 2 x (vi x-r), where is the vector
between the particle positions. Show that these two forces are equal and opposite in accordance with Newton's third
law if and only if rx (vi × 2) = 0.
6
The force = +3 + 2k acts at the point (1, 1, 1). Find the torque of the force about
(a)
(b)
the point (2, -1, 5). Careful about the direction of ŕ between the two points.
the line = 21-+5k+ (i-+2k)t. Note that the line goes through the point (2, -1, 5).
Chapter 22 Solutions
Modified Mastering Physics with Pearson eText -- Access Card -- for College Physics: Explore and Apply (18-Weeks)
Ch. 22 - Prob. 1RQCh. 22 - Review Question 22.2 How can we test the law of...Ch. 22 - Review Question 22.3 Why is the expression light...Ch. 22 -
Review Question 22.4 Why did we study total...Ch. 22 - Review Question 22.5 What is the critical angle...Ch. 22 - Review Question 22.6 Why is the sky blue? Why are...Ch. 22 - Prob. 7RQCh. 22 - 1. How can you convince your friend that a beam of...Ch. 22 - 2. Each point of a light-emitting object
a. sends...Ch. 22 - What is a light ray? a. A thin beam of light b. A...
Ch. 22 - Prob. 5MCQCh. 22 - You fix a point-like light source 3.0m away from a...Ch. 22 - Prob. 7MCQCh. 22 - A light ray travels through air and then passes...Ch. 22 - 9. A right triangular prism sits on a base A...Ch. 22 - 10. A laser beam travels through oil in a...Ch. 22 - Prob. 11MCQCh. 22 - Prob. 12MCQCh. 22 - What effects of light radiation and reflection are...Ch. 22 - Prob. 14CQCh. 22 - Prob. 15CQCh. 22 - Explain how a sundial works (a sundial is just a...Ch. 22 - Prob. 17CQCh. 22 - Prob. 18CQCh. 22 - Prob. 19CQCh. 22 - Prob. 20CQCh. 22 - Prob. 21CQCh. 22 - The visible diameters of the Moon and the Sun are...Ch. 22 - The shadow of the Moon on Earth is 200 km wide....Ch. 22 - Prob. 24CQCh. 22 - 25. During the day, you can see the trees in your...Ch. 22 - 26. You look at a fish underwater Draw a ray...Ch. 22 - 27. Take a pencil and try to touch a penny on the...Ch. 22 - 28. Will a beam of light experience total internal...Ch. 22 - Prob. 29CQCh. 22 - Prob. 30CQCh. 22 - Prob. 31CQCh. 22 - Prob. 32CQCh. 22 - 33. What phenomena can be explained using a wave...Ch. 22 - How is it possible that two different models can...Ch. 22 - Oliver has finished building a wall in a house. He...Ch. 22 - Tree height You are standing under a tree. The...Ch. 22 - Lunar eclipse A lunar eclipse happens when the...Ch. 22 - * Shadows during romantic dinner You and a friend...Ch. 22 - * Pinhole camera (camera obscura) You want to make...Ch. 22 - 6. * Solar eclipse Only observers in a very narrow...Ch. 22 - Prob. 7PCh. 22 - An extended light source can be modeled as a group...Ch. 22 - * You have a small mirror. While holding the...Ch. 22 - Prob. 11PCh. 22 - 12. Design a mirror arrangement so that light from...Ch. 22 - Two mirrors are oriented at right angles. A narrow...Ch. 22 - Prob. 14PCh. 22 - A flat mirror is rotated 17 about an axis in the...Ch. 22 - (a) A laser beam passes from air into a 25 glucose...Ch. 22 - 17. A beam of light passes from glass with...Ch. 22 - A beam of light passes from air into a transparent...Ch. 22 - 19. * Moving laser beam An aquarium open at the...Ch. 22 - **Lifting light You have a V-shaped transparent...Ch. 22 - Prob. 21PCh. 22 - Prob. 22PCh. 22 - 23. * BIO Vitreous humor Behind the lens of the...Ch. 22 - Prob. 24PCh. 22 - * Light moving up and toward the right in air...Ch. 22 - * A laser beam is incident at 30 with respect to...Ch. 22 - * Can your light be seen? You swim under water at...Ch. 22 - * Light is incident on the boundary between two...Ch. 22 - 29. Diamond total reflection Determine the...Ch. 22 - Determine the refractive index of a glucose...Ch. 22 - * You wish to use a prism to change the direction...Ch. 22 - * You aim a laser beam (in air) at 80.0 with...Ch. 22 - 33. * Prism total reflection What must be the...Ch. 22 - Gems and critical angles In gemology, two of the...Ch. 22 - (a) The refractive index for the gem aquamarine is...Ch. 22 - 36. * You have three transparent media with...Ch. 22 - 37. (a) Rays of light are incident on a glass-air...Ch. 22 - 42. ** When reaching a boundary between two media,...Ch. 22 - 43. * A laser beam travels from air (n = 1.00)...Ch. 22 - . You sit on a raft and want to orient a mirror so...Ch. 22 - 45. ** Rain sensor Many cars today are equipped...Ch. 22 - Prob. 46PCh. 22 - Prob. 47PCh. 22 - 48. A light ray is incident on a flat piece of...Ch. 22 - 49. * Prism You have a triangular prism made of...Ch. 22 - * You have a candle and a large piece of paper...Ch. 22 - 52. * You place a point-like source of light at...Ch. 22 - 53. ** There is a light pole on one bank of a...Ch. 22 - 54. ** Coated optic fiber An optic fiber of...Ch. 22 - relative to the normal, hits the mirror, reflects,...Ch. 22 - 56. ** A scuba diver stands at the bottom of a...Ch. 22 - Prob. 57RPPCh. 22 - Rainbows How is a rainbow formed? Recall that the...Ch. 22 - Rainbows How is a rainbow formed? Recall that the...Ch. 22 - Prob. 60RPPCh. 22 - Prob. 61RPPCh. 22 - Rainbows How is a rainbow formed? Recall that the...Ch. 22 - Prob. 63RPPCh. 22 - Prob. 64RPPCh. 22 - Rainbows How is a rainbow formed? Recall that the...Ch. 22 - Prob. 66RPPCh. 22 - Prob. 67RPPCh. 22 - Prob. 68RPP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 5 Find the total work done by forces A and B if the object undergoes the displacement C. Hint: Can you add the two forces first?arrow_forward1 F2 F₁ -F₁ F6 F₂ S A Work done on the particle as it moves through the displacement is positive. True False by the force Farrow_forwardA student measuring the wavelength produced by a vapour lamp directed the lightthrough two slits with a separation of 0.20 mm. An interference pattern was created on the screen,3.00 m away. The student found that the distance between the first and the eighth consecutive darklines was 8.0 cm. Draw a quick picture of the setup. What was the wavelength of the light emittedby the vapour lamp?arrow_forward
- A ball is tied to one end of a string. The other end of the string is fixed. The ball is set in motion around a vertical circle without friction. At the top of the circle, the ball has a speed of ; = √√ Rg, as shown in the figure. At what angle should the string be cut so that the ball will travel through the center of the circle? The path after string is cut Rarrow_forward(a) A luggage carousel at an airport has the form of a section of a large cone, steadily rotating about its vertical axis. Its metallic surface slopes downward toward the outside, making an angle of 24.5° with the horizontal. A 30.0-kg piece of luggage is placed on the carousel, 7.46 m from the axis of rotation. The travel bag goes around once in 37.5 s. Calculate the magnitude of the force of static friction between the bag and the carousel. Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. N (b) The drive motor is shifted to turn the carousel at a higher constant rate of rotation, and the piece of luggage is bumped to a position 7.94 m from the axis of rotation. The bag is on the verge of slipping as it goes around once every 30.5 s. Calculate the coefficient of static friction between the bag and the carousel. Your response differs significantly from the correct answer. Rework your solution from the…arrow_forward(a) Imagine that a space probe could be fired as a projectile from the Earth's surface with an initial speed of 5.78 x 104 m/s relative to the Sun. What would its speed be when it is very far from the Earth (in m/s)? Ignore atmospheric friction, the effects of other planets, and the rotation of the Earth. (Consider the mass of the Sun in your calculations.) Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. m/s (b) What If? The speed provided in part (a) is very difficult to achieve technologically. Often, Jupiter is used as a "gravitational slingshot" to increase the speed of a probe to the escape speed from the solar system, which is 1.85 x 104 m/s from a point on Jupiter's orbit around the Sun (if Jupiter is not nearby). If the probe is launched from the Earth's surface at a speed of 4.10 x 10 m/s relative…arrow_forward
- As shown in the figure, a roller-coaster track includes a circular loop of radius R in a vertical plane. A car of mass m is released from rest at a height h above the bottom of the circular section and then moves freely along the track with negligible energy loss due to friction. i (a) First suppose the car barely makes it around the loop; at the top of the loop, the riders are upside down and feel weightless. Find the required height h of the release point above the bottom of the loop. (Use any variable or symbol stated above along with the following as necessary: g.) h = (b) If the car is released at some point above the minimum required height, determine the amount by which the normal force on the car at the bottom of the loop exceeds the normal force on the car at the top of the loop. (Consider the moments when the car reaches the top and when it reaches the bottom again. Use any variable or symbol stated above along with the following as necessary: g.) NB - NT = The normal force…arrow_forwardOne of the more challenging elements in pairs figure skating competition is the "death spiral" (see the figure below), in which the female figure skater, balanced on one skate, is spun in a circle by the male skater. i The axis of rotation of the pair is vertical and through the toe of the skate on the male skater's leg that is bent backward, the toe being planted into the ice. During the one-armed maneuver first developed in the 1940s, the outstretched arm of the male skater must apply a large force to support a significant fraction of the female skater's weight and also to provide her centripetal acceleration. This force represents a danger to the structure of the wrist of the male skater. (a) Modeling the female skater, of mass 47.0 kg, as a particle, and assuming that the combined length of the two outstretched arms is 129 cm and that arms make an angle of 45.0° with the horizontal, what is the magnitude of the force (in N) exerted by the male skater's wrist if each turn is…arrow_forwardOne popular design of a household juice machine is a conical, perforated stainless steel basket 3.30 cm high with a closed bottom of diameter 8.00 cm and open top of diameter 14.40 cm that spins at 16000 revolutions per minute about a vertical axis. Solid pieces of fruit are chopped into granules by cutters at the bottom of the spinning cone. Then the fruit granules rapidly make their way to the sloping surface where the juice is extracted to the outside of the cone through the mesh perforations. The dry pulp spirals upward along the slope to be ejected from the top of the cone. The juice is collected in an enclosure immediately surrounding the sloped surface of the cone. Pulp Motor Spinning basket Juice spout (a) What centripetal acceleration does a bit of fruit experience when it is spinning with the basket at a point midway between the top and bottom? m/s² ---Direction--- (b) Observe that the weight of the fruit is a negligible force. What is the normal force on 2.00 g of fruit at…arrow_forward
- A satellite is in a circular orbit around the Earth at an altitude of 3.88 × 106 m. (a) Find the period of the orbit. (Hint: Modify Kepler's third law so it is suitable for objects orbiting the Earth rather than the Sun. The radius of the Earth is 6.38 × 106 m, and the mass of the Earth is 5.98 x 1024 kg.) h (b) Find the speed of the satellite. km/s (c) Find the acceleration of the satellite. m/s² toward the center of the eartharrow_forwardShown below is a waterslide constructed in the late 1800's. This slide was unique for its time due to the fact that a large number of small wheels along its length made friction negligible. Riders rode a small sled down the chute which ended with a horizontal section that caused the sled and rider to skim across the water much like a flat pebble. The chute was 9.76 m high at the top and 54.3 m long. Consider a rider and sled with a combined mass of 81.0 kg. They are pushed off the top of the slide from point A with a speed of 2.90 m/s, and they skim horizontally across the water a distance of 50 m before coming to rest. 9.76 m Engraving from Scientific American, July 1888 A (a) 20.0 m/ -54.3 m- 50.0 m (b) (a) Find the speed (in m/s) of the sled and rider at point C. 14.14 m/s (b) Model the force of water friction as a constant retarding force acting on a particle. Find the magnitude (in N) of the friction force the water exerts on the sled. 162.2 N (c) Find the magnitude (in N) of the…arrow_forwardA small object with mass 3.60 kg moves counterclockwise with constant angular speed 1.40 rad/s in a circle of radius 2.55 m centered at the origin. It starts at the point with position vector 2.551 m. Then it undergoes an angular displacement of 9.15 rad. (a) What is its new position vector? m (b) In what quadrant is the object located and what angle does its position vector make with the positive x-axis? ---Select--- ✓ at (c) What is its velocity? m/s (d) In what direction is it moving? (Give a negative angle.) ° from the +x direction. (e) What is its acceleration? m/s² (f) What total force is exerted on the object? Narrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning