
Physics
3rd Edition
ISBN: 9781259233616
Author: GIAMBATTISTA
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 21.4, Problem 21.3PP
To determine
The inductive reactance and the rms current for the inductor.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A spring is attached to an inclined plane as shown in the figure. A block of mass m = 2.71 kg is placed on the incline at a distance d = 0.285 m along the incline from the end of the spring. The block is given a quick shove and moves down the incline with an initial speed v = 0.750 m/s. The
incline angle is = 20.0°, the spring constant is k = 505 N/m, and we can assume the surface is frictionless. By what distance (in m) is the spring compressed when the block momentarily comes to rest?
m
m
0
k
wwww
A block of mass m = 2.50 kg situated on an incline at an angle of
k=100 N/m
www
50.0° is connected to a spring of negligible mass having a spring constant of 100 N/m (Fig. P8.54). The pulley and incline are frictionless. The block is released from rest with the spring initially unstretched.
Ө
m
i
(a) How far does it move down the frictionless incline before coming to rest?
m
(b) What is its acceleration at its lowest point?
Magnitude
m/s²
Direction
O up the incline
down the incline
(a) A 15.0 kg block is released from rest at point A in the figure below. The track is frictionless except for the portion between points B and C, which has a length of 6.00 m. The block travels down the track, hits a spring of force constant 2,100 N/m, and compresses the spring 0.250 m
from its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between points B and C.
-A
3.00 m
B
C
-6.00 m
i
(b) What If? The spring now expands, forcing the block back to the left. Does the block reach point B?
Yes
No
If the block does reach point B, how far up the curved portion of the track does it reach, and if it does not, how far short of point B does the block come to a stop? (Enter your answer in m.)
m
Chapter 21 Solutions
Physics
Ch. 21.1 - CHECKPOINT 21.1
A hair dryer is labeled “120 V,...Ch. 21.1 -
Practice Problem 21.1 European Wall Outlet
The...Ch. 21.3 - 21.3 A capacitor is connected to an ac power...Ch. 21.3 - Prob. 21.2PPCh. 21.4 -
CHECKPOINT 21.4
Suppose an inductor and a...Ch. 21.4 - Prob. 21.3PPCh. 21.5 -
CHECKPOINT 21.5
In a series RLC circuit, the...Ch. 21.5 - Prob. 21.4PPCh. 21.5 - Prob. 21.5PPCh. 21.6 - 21.6 Tuning the Radio to a Different Station
Find...
Ch. 21 - Prob. 1CQCh. 21 - 2. Electric power is distributed long distances...Ch. 21 - 3. Explain the differences between average...Ch. 21 - Prob. 4CQCh. 21 - Prob. 5CQCh. 21 - Prob. 6CQCh. 21 - Prob. 7CQCh. 21 - Prob. 8CQCh. 21 - Prob. 9CQCh. 21 - Prob. 10CQCh. 21 - Prob. 11CQCh. 21 - Prob. 12CQCh. 21 - Prob. 13CQCh. 21 - Prob. 14CQCh. 21 - Prob. 15CQCh. 21 - Prob. 16CQCh. 21 - Prob. 17CQCh. 21 - 18. Let’s examine the crossover network of Fig....Ch. 21 - Prob. 1MCQCh. 21 - Prob. 2MCQCh. 21 - Prob. 3MCQCh. 21 - Prob. 4MCQCh. 21 - Prob. 5MCQCh. 21 - Prob. 6MCQCh. 21 - Prob. 7MCQCh. 21 - Prob. 8MCQCh. 21 - Prob. 9MCQCh. 21 -
10. Which graph is correct if the circuit...Ch. 21 - 1. A lightbulb is connected to a 120 V (rms), 60...Ch. 21 - 3. A 1500 w heater runs on 120 V rms. What is the...Ch. 21 - 4. A circuit breaker trips when the rms current...Ch. 21 - 5. A 1500 W electric hair dryer is designed to...Ch. 21 - 6. A 4.0 kW heater is designed to be connected to...Ch. 21 - 7. (a) What rms current is drawn by a 4200 w...Ch. 21 - 8. A television set draws an rms current of 2.50 A...Ch. 21 - 9. The instantaneous sinusoidal emf from an ac...Ch. 21 - 10. A hair dryer has a power rating of 1200 W at...Ch. 21 - Prob. 11PCh. 21 -
12. A variable capacitor with negligible...Ch. 21 -
13. At what frequency is the reactance of a 6.0...Ch. 21 - 14. A 0.400 μF capacitor is connected across the...Ch. 21 -
15. A 0.250 μF capacitor is connected to a 220 V...Ch. 21 -
16. A capacitor is connected across the terminals...Ch. 21 - 17. Show, from XC = l/(ωC), that the units of...Ch. 21 - 18. The charge on a capacitor in an ac circuit is...Ch. 21 - 19. A capacitor (capacitance = C) is connected to...Ch. 21 - 20. Three capacitors (2.0 μF, 3.0 μF, 6.0 μF) are...Ch. 21 - 21. A capacitor and a resistor are connected in...Ch. 21 - 22. A variable inductor with negligible resistance...Ch. 21 - Prob. 23PCh. 21 - Prob. 24PCh. 21 - 25. A solenoid with a radius of 8.0 × 10−3 m and...Ch. 21 -
26. A 4.00 mH inductor is connected to an ac...Ch. 21 - 27. Two ideal inductors (0.10 H, 0.50 H) are...Ch. 21 - Prob. 28PCh. 21 - 29. Suppose that an ideal capacitor and an ideal...Ch. 21 - 30. The voltage across an inductor and the...Ch. 21 - 31. Make a figure analogous to Fig. 21.5 for an...Ch. 21 - 32. A 25.0 mH inductor, with internal resistance...Ch. 21 - 33. An inductor has an impedance of 30.0 Ω and a...Ch. 21 -
34. A 6.20 mH inductor is one of the elements in...Ch. 21 - 35. A series combination of a resistor and a...Ch. 21 - 36. A 300.0 Ω resistor and a 2.5 μF capacitor are...Ch. 21 - Prob. 37PCh. 21 - 38. (a) Find the power factor for the RLC series...Ch. 21 - 39. A computer draws an rms current of 2.80 A at...Ch. 21 - 40. An RLC series circuit is connected to an ac...Ch. 21 - 41. An ac circuit has a single resistor,...Ch. 21 -
42. An RLC circuit has a resistance of 10.0 Ω,...Ch. 21 - 43. An ac circuit contains a 12.5 Ω resistor, a...Ch. 21 - 44. ✦ A 0.48 μF capacitor is connected in series...Ch. 21 - 45. A series combination of a 22.0 mH inductor...Ch. 21 - Prob. 46PCh. 21 -
47. A 150 Ω resistor is in series with a 0.75...Ch. 21 -
48. A series circuit with a resistor and a...Ch. 21 - 49. (a) What is the reactance of a 10.0 mH...Ch. 21 - Prob. 50PCh. 21 - Prob. 51PCh. 21 - Prob. 52PCh. 21 - Prob. 53PCh. 21 - Prob. 54PCh. 21 - 55. To test hearing at various frequencies, a...Ch. 21 - Prob. 56PCh. 21 - Prob. 57PCh. 21 - Prob. 58PCh. 21 - Prob. 59PCh. 21 - Prob. 60PCh. 21 - Prob. 61PCh. 21 - Prob. 62PCh. 21 - Prob. 63PCh. 21 - Prob. 64PCh. 21 - Prob. 65PCh. 21 - Prob. 66PCh. 21 - Prob. 67PCh. 21 - Prob. 68PCh. 21 - Prob. 69PCh. 21 - 70. The phasor diagram for a particular RLC series...Ch. 21 - Prob. 71PCh. 21 - Prob. 72PCh. 21 - Prob. 73PCh. 21 - Prob. 74PCh. 21 - Prob. 75PCh. 21 - Prob. 76PCh. 21 - Prob. 77PCh. 21 - Prob. 78PCh. 21 - Prob. 79PCh. 21 - Prob. 80PCh. 21 - Prob. 81PCh. 21 - Prob. 82PCh. 21 - Prob. 83PCh. 21 - Prob. 84PCh. 21 - 85. (a) When the resistance of an RLC series...Ch. 21 - Prob. 86PCh. 21 - Prob. 87PCh. 21 - Prob. 88PCh. 21 - Prob. 89PCh. 21 - Prob. 90PCh. 21 - Prob. 91PCh. 21 - Prob. 92PCh. 21 - Prob. 93PCh. 21 - Prob. 94PCh. 21 - Prob. 95PCh. 21 - Prob. 96PCh. 21 - Prob. 97PCh. 21 - Prob. 98PCh. 21 - Prob. 99PCh. 21 - Prob. 100PCh. 21 - Prob. 101P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A ball of mass m = 1.95 kg is released from rest at a height h = 57.0 cm above a light vertical spring of force constant k as in Figure [a] shown below. The ball strikes the top of the spring and compresses it a distance d = 7.80 cm as in Figure [b] shown below. Neglecting any energy losses during the collision, find the following. т m a d T m b i (a) Find the speed of the ball just as it touches the spring. 3.34 m/s (b) Find the force constant of the spring. Your response differs from the correct answer by more than 10%. Double check your calculations. kN/marrow_forwardI need help with questions 1-10 on my solubility curve practice sheet. I tried to my best ability on the answers, however, i believe they are wrong and I would like to know which ones a wrong and just need help figuring it out.arrow_forwardQuestion: For a liquid with typical values a = 10-3K-¹ K = 10-4 bar-1 V=50 cm³ mol-1, Cp 200 J mol-1K-1, calculate the following quantities at 300 K and 1 bar for one mole of gas: 1. () P ән 2. (9) T 3. (V) T 4. (1) P 5. (9) T 6. Cv 7. (OF)Tarrow_forward
- A,B,C AND Darrow_forwardA bungee jumper plans to bungee jump from a bridge 64.0 m above the ground. He plans to use a uniform elastic cord, tied to a harness around his body, to stop his fall at a point 6.00 m above the water. Model his body as a particle and the cord as having negligible mass and obeying Hooke's law. In a preliminary test he finds that when hanging at rest from a 5.00 m length of the cord, his body weight stretches it by 1.55 m. He will drop from rest at the point where the top end of a longer section of the cord is attached to the bridge. (a) What length of cord should he use? Use subscripts 1 and 2 respectively to represent the 5.00 m test length and the actual jump length. Use Hooke's law F = KAL and the fact that the change in length AL for a given force is proportional the length L (AL = CL), to determine the force constant for the test case and for the jump case. Use conservation of mechanical energy to determine the length of the rope. m (b) What maximum acceleration will he…arrow_forward210. Sometimes the Helmholtz free energy F(T, V, N) divided by temperature, T, is an interesting quantity. For example, the quantity is proportional to the logarithm of the equilibrium constant or solubilities. A. Derive a relationship showing that Find the constant of proportionality. a F αυ ƏT T B. Suppose F(T) depends on temperature in the following way: F(T)=2aT²+bT. Find S(T) and U(T).arrow_forward
- choosing East (e) is not correct!arrow_forwarddisks have planes that are parallel and centered Three polarizing On a common axis. The direction of the transmission axis Colish dashed line) in each case is shown relative to the common vertical direction. A polarized beam of light (with its axis of polarization parallel to the horizontal reference direction) is incident from the left on the first disk with int intensity So = 790 W/m². Calculate the transmitted intensity if 81=28.0° O2-35.0°, and O3 = 40.0° w/m² horizontal Өз 02arrow_forwardA polarized light is incident on several polarizing disks whose planes are parallel and centered on common axis. Suppose that the transmission axis of the first polarizer is rotated 20° relative to the axis of polarization of the incident and that the transmission axis of each exis of light, additional analyzer is rotated 20° relative to the transmission axis the previous one. What is the minimum number of polarizer needed (whole number), so the transmitted light through all polarizing sheets has an Striking intensity that is less then 10% that the first polarizer?arrow_forward
- A high energy pulsed laser emits 1.5 nano second-long pulse of average power 1.80x10" W. The beam is cylindrical with 2.00 mm in radius. Determine the rms value of the B-field? -Tarrow_forwardA 23.0-mw (mill:-Watts) laser puts out a narrow cyclindrical beam 50 mm in diameter. What is the average N/C. rms E-field?arrow_forwardThe average intensity of light emerging from a polarizing sheet is. 0.550 W/m², and the average intensity of the horizontally polarized light incident on the sheet is 0.940 W/m². Determine the angle that the transmission axis of the polarizing sheet makes with the horizontalarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Introduction To Alternating Current; Author: Tutorials Point (India) Ltd;https://www.youtube.com/watch?v=0m142qAZZpE;License: Standard YouTube License, CC-BY