Conjecture Consider the functions f ( x ) = x 2 and g ( x ) = x 3 . (a) Graph f and f' on the same set of axes. (b) Graph g and g' on the same set of axes. (c) Identify a pattern between f and g and their respective derivatives. Use the pattern to make a conjecture about h' ( x ) if h ( x ) = x n . where " is an integer and n ≥ 2 ? (d) Find f' ( x ) if f ( x ) = x 4 Compare the result will) the conjecture in part (c). Is this a proof of your conjecture? Explain.
Conjecture Consider the functions f ( x ) = x 2 and g ( x ) = x 3 . (a) Graph f and f' on the same set of axes. (b) Graph g and g' on the same set of axes. (c) Identify a pattern between f and g and their respective derivatives. Use the pattern to make a conjecture about h' ( x ) if h ( x ) = x n . where " is an integer and n ≥ 2 ? (d) Find f' ( x ) if f ( x ) = x 4 Compare the result will) the conjecture in part (c). Is this a proof of your conjecture? Explain.
Solution Summary: The author explains that the graph of the functions is differentiable for all values of x where n is not an integer.
Conjecture Consider the functions
f
(
x
)
=
x
2
and
g
(
x
)
=
x
3
.
(a) Graph f and f' on the same set of axes.
(b) Graph g and g' on the same set of axes.
(c) Identify a pattern between f and g and their respective derivatives. Use the pattern to make a conjecture about h' (x) if
h
(
x
)
=
x
n
. where " is an integer and
n
≥
2
?
(d) Find f'(x) if
f
(
x
)
=
x
4
Compare the result will) the conjecture in part (c). Is this a proof of your conjecture? Explain.
As the speed of a train increases, the amount of power needed to maintain that speed increases, and the rate
of power increase also increases. Let P = f(v) be the power, in megawatts, needed for the train to maintain a
speed of v kilometers per hour.
(a) Sketch a possible graph of f.
(b) For each of the functions f, f', and f", decide whether the function is positive or negative, and explain
your answers.
(c) What requires a greater increase in power: increasing the train's speed from 100 to 150 kilometers per
hour, or increasing the train's speed from 200 to 250 kilometers per hour? Explain, based on your
answer to part (b).
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.