A Lightning Strike Storm clouds build up large negative charges, as described in the chapter. The charges dwell in charge centers, regions of concentrated charge. Suppose a cloud has –25 C in a 1.0|dash|km|dash|diameter spherical charge center located 10 km above the ground, as sketched in Figure P21.86. The negative charge center attracts a similar amount of positive charge that is spread on the ground below the cloud. Figure P21.86 The charge center and the ground function as a charged capacitor, with a potential difference of approximately 4 × 10 8 V. The large electric field between these two "electrodes" may ionize the air, leading to a conducting path between the cloud and the ground. Charges will flow along this conducting path, causing a discharge of the capacitor-a lightning strike. If the cloud transfers all of its charge to the ground via several rapid lightning flashes lasting a total of 1 s, what is the average power? A. 1 GW B. 2GW C. 5GW D. 10 GW
A Lightning Strike Storm clouds build up large negative charges, as described in the chapter. The charges dwell in charge centers, regions of concentrated charge. Suppose a cloud has –25 C in a 1.0|dash|km|dash|diameter spherical charge center located 10 km above the ground, as sketched in Figure P21.86. The negative charge center attracts a similar amount of positive charge that is spread on the ground below the cloud. Figure P21.86 The charge center and the ground function as a charged capacitor, with a potential difference of approximately 4 × 10 8 V. The large electric field between these two "electrodes" may ionize the air, leading to a conducting path between the cloud and the ground. Charges will flow along this conducting path, causing a discharge of the capacitor-a lightning strike. If the cloud transfers all of its charge to the ground via several rapid lightning flashes lasting a total of 1 s, what is the average power? A. 1 GW B. 2GW C. 5GW D. 10 GW
Storm clouds build up large negative charges, as described in the chapter. The charges dwell in charge centers, regions of concentrated charge. Suppose a cloud has –25 C in a 1.0|dash|km|dash|diameter spherical charge center located 10 km above the ground, as sketched in Figure P21.86. The negative charge center attracts a similar amount of positive charge that is spread on the ground below the cloud.
Figure P21.86
The charge center and the ground function as a charged capacitor, with a potential difference of approximately 4 × 108 V. The large electric field between these two "electrodes" may ionize the air, leading to a conducting path between the cloud and the ground. Charges will flow along this conducting path, causing a discharge of the capacitor-a lightning strike.
If the cloud transfers all of its charge to the ground via several rapid lightning flashes lasting a total of 1 s, what is the average power?
Statistical thermodynamics. The number of imaginary replicas of a system of N particlesa) cannot be greater than Avogadro's numberb) must always be greater than Avogadro's number.c) has no relation to Avogadro's number.
Lab-Based Section
Use the following information to answer the lab based scenario.
A student performed an experiment in an attempt to determine the index of refraction of glass.
The student used a laser and a protractor to measure a variety of angles of incidence and
refraction through a semi-circular glass prism. The design of the experiment and the student's
results are shown below.
Angle of
Incidence (°)
Angle of
Refraction (º)
20
11
30
19
40
26
50
31
60
36
70
38
2a) By hand (i.e., without using computer software), create a linear graph on graph paper
using the student's data. Note: You will have to manipulate the data in order to achieve a
linear function.
2b) Graphically determine the index of refraction of the semi-circular glass prism, rounding your
answer to the nearest hundredth.
Use the following information to answer the next two questions.
A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in
the diagram.
3a) Determine the critical angle of zircon.
35.0°
70°
55
55°
3b) Determine the angle of refraction when the laser beam leaves the prism.
Chapter 21 Solutions
College Physics: A Strategic Approach (3rd Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.