For Exercises 75-78, determine if points A , B , and C are collinear. Three points are collinear if they all fall on the same line. There are several ways that we can determine if three points, A , B , and C are collinear. One method is to determine if the sum of the lengths of the line segments A B ¯ and B C ¯ equals the length of A C ¯ . ( 2 , 2 ) , ( 4 , 3 ) , and ( 8 , 5 )
For Exercises 75-78, determine if points A , B , and C are collinear. Three points are collinear if they all fall on the same line. There are several ways that we can determine if three points, A , B , and C are collinear. One method is to determine if the sum of the lengths of the line segments A B ¯ and B C ¯ equals the length of A C ¯ . ( 2 , 2 ) , ( 4 , 3 ) , and ( 8 , 5 )
Solution Summary: The author explains that three points A, B and C are collinear when the sum of lengths of the line segment stackrel
For Exercises 75-78, determine if points A, B, and C are collinear. Three points are collinear if they all fall on the same line. There are several ways that we can determine if three points, A, B, and C are collinear. One method is to determine if the sum of the lengths of the line segments
A
B
¯
and
B
C
¯
equals the length of
A
C
¯
.
Evaluate the following expression and show your work to support your calculations.
a). 6!
b).
4!
3!0!
7!
c).
5!2!
d). 5!2!
e).
n!
(n - 1)!
Amy and Samiha have a hat that contains two playing cards, one ace and one king. They are playing a game where they randomly pick a card out of the hat four times, with replacement.
Amy thinks that the probability of getting exactly two aces in four picks is equal to the probability of not getting exactly two aces in four picks. Samiha disagrees. She thinks that the probability of not getting exactly two aces is greater.
The sample space of possible outcomes is listed below. A represents an ace, and K represents a king. Who is correct?
Consider the exponential function f(x) = 12x. Complete the sentences about the key features of the graph.
The domain is all real numbers.
The range is y> 0.
The equation of the asymptote is y = 0
The y-intercept is 1
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.