The dielectric in a capacitor serves two purposes. It increases the capacitance, compared to an otherwise identical capacitor with an air gap, and it increases the maximum potential difference the capacitor can support. If the electric field in a material is sufficiently strong, the material will suddenly become able to conduct , creating a spark. The critical field strength, at which breakdown occurs, is 3.0 MV/m for air, but 60 MV/m for Teflon. a. A parallel-plate capacitor consists of two square plates, 15 cm on a side, spaced 0.50 mm apart with only air between them. What is the maximum energy that can be stored by the capacitor? b. What is the maximum energy that can be stored if the plates are separated by a 0.50-mm-thick Teflon sheet?
The dielectric in a capacitor serves two purposes. It increases the capacitance, compared to an otherwise identical capacitor with an air gap, and it increases the maximum potential difference the capacitor can support. If the electric field in a material is sufficiently strong, the material will suddenly become able to conduct , creating a spark. The critical field strength, at which breakdown occurs, is 3.0 MV/m for air, but 60 MV/m for Teflon. a. A parallel-plate capacitor consists of two square plates, 15 cm on a side, spaced 0.50 mm apart with only air between them. What is the maximum energy that can be stored by the capacitor? b. What is the maximum energy that can be stored if the plates are separated by a 0.50-mm-thick Teflon sheet?
The dielectric in a capacitor serves two purposes. It increases the capacitance, compared to an otherwise identical capacitor with an air gap, and it increases the maximum potential difference the capacitor can support. If the electric field in a material is sufficiently strong, the material will suddenly become able to conduct, creating a spark. The critical field strength, at which breakdown occurs, is 3.0 MV/m for air, but 60 MV/m for Teflon.
a. A parallel-plate capacitor consists of two square plates, 15 cm on a side, spaced 0.50 mm apart with only air between them. What is the maximum energy that can be stored by the capacitor?
b. What is the maximum energy that can be stored if the plates are separated by a 0.50-mm-thick Teflon sheet?
Point charges of 6.50 μC and -2.50 μC are placed 0.300 m apart. (Assume the negative charge is located to the right of the positive charge. Include the sign of the value in your answers.)
(a) Where can a third charge be placed so that the net force on it is zero?
0.49
m to the right of the -2.50 μC charge
(b) What if both charges are positive?
0.49
xm to the right of the 2.50 μC charge
Find the electric field at the location of q, in the figure below, given that q₁ =9c9d = +4.60 nC, q = -1.00 nC, and the square is 20.0 cm on a side. (The +x axis is directed to the right.)
magnitude
direction
2500
x
What symmetries can you take advantage of? What charges are the same magnitude and the same distance away? N/C
226
×
How does charge sign affect the direction of the electric field? counterclockwise from the +x-axis
9a
9b
%
9
9d
would 0.215 be the answer for part b?
Chapter 21 Solutions
College Physics: A Strategic Approach (3rd Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.