Concept explainers
Two 2.0-cm-diameter disks spaced 2.0 mm apart form a parallel-plate capacitor. The electric field between the disks is 5.0 × 105 V/m. electric field between the disks is 5.0 × 105 V/m.
a. What is the voltage across the capacitor?
b. How much charge is on each disk?
c. An electron is launched from the negative plate. It strikes the positive plate at a speed of 2.0 × 107 m/s. What was the electron's speed as it left the negative plate?
Learn your wayIncludes step-by-step video
Chapter 21 Solutions
College Physics: A Strategic Approach (3rd Edition)
Additional Science Textbook Solutions
Genetic Analysis: An Integrated Approach (3rd Edition)
Human Physiology: An Integrated Approach (8th Edition)
Campbell Biology in Focus (2nd Edition)
Applications and Investigations in Earth Science (9th Edition)
Organic Chemistry (8th Edition)
Campbell Biology (11th Edition)
- FIGURE P26.14 Problems 14, 15, and 16. Four charged particles are at rest at the corners of a square (Fig. P26.14). The net charges are q1 = q2 = 2.65 C and q3 = q4 = 5.15 C. The distance between particle 1 and particle 3 is r13 = 1.75 cm. a. What is the electric potential energy of the four-particle system? b. If the particles are released from rest, what will happen to the system? In particular, what will happen to the systems kinetic energy as their separations become infinite?arrow_forwardTwo 5.00-nC charged particles are in a uniform electric field with a magnitude of 625 N/C. Each of the particles is moved from point A to point B along two different paths, labeled in Figure P26.65. a. Given the dimensions in the figure, what is the change in the electric potential experienced by the particle that is moved along path 1 (black)? b. What is the change in the electric potential experienced by the particle that is moved along path 2 (red)? c. Is there a path between the points A and B for which the change in the electric potential is different from your answers to parts (a) and (b)? Explain. FIGURE P26.65 Problems 65, 66, and 67.arrow_forwardProblems 72, 73, and 74 are grouped. 72. A Figure P26.72 shows a source consisting of two identical parallel disks of radius R. The x axis runs through the center of each disk. Each disk carries an excess charge uniformly distributed on its surface. The disk on the left has a total positive charge Q, and the disk on the right has a total negative charge Q. The distance between the disks is 3R, and point A is 2R from the positively charged disk. Find an expression for the electric potential at point A between the disks on the x axis. Approximate any square roots to three significant figures. FIGURE P26.72 Problems 72, 73, and 74.arrow_forward
- To form a helium atom, an alpha particle that contains two protons and two neutrons is fixed at one location, and two electrons are brought in from far away, one at a time. The first electron is placed at 0.6001010 m from the alpha particle and held there while the second electron is brought to 0.6001010 m from the alpha particle on the other side from the first electron. See die final configuration below, (a) How much work is done in each step? (b) What is the electrostatic energy of die alpha particle and two electrons in the final configuration?arrow_forward(a) What is the capacitance of a parallel plate capacitor having plates of area 1.50 m2 that are separated by 0.0200 mm of neoprene rubber? (b) What charge does it hold when 9.00 V is applied to it?arrow_forwardThe electric field strength between two parallel conducting plates separated by 4.00 cm is 7.50104 V/m. (a) What is the potential difference between the plates? (b) The plate with the lowest potential is taken to be zero volts. What is the potential 1.00 cm from that plate and 3.00 cm from the other?arrow_forward
- (a) A certain parallel-plate capacitor has plates of area 4.00 m2 , separated by 0.0100 mm of nylon, and stores 0.170 C of charge. What is the applied voltage? (b) What is unreasonable about this result? (c) Which assumptions are responsible or inconsistent?arrow_forwardA charged particle is moved in a uniform electric field between two points, A and B, as depicted in Figure P26.65. Does the change in the electric potential or the change in the electric potential energy of the particle depend on the sign of the charged particle? Consider the movement of the particle from A to B, and vice versa, and determine the signs of the electric potential and the electric potential energy in each possible scenario.arrow_forwardFour parallel metal plates P1, P2, P3, and P4, each of area 7.50 cm2, are separated successively by a distance d = 1.19 mm as shown in Figure P25.34. Plate P1 is connected to the negative terminal of a battery, and P2 is connected to the positive terminal. The battery maintains a potential difference of 12.0 V. (a) If P3 is connected to the negative terminal, what is the capacitance of the three-plate system P1P2P3? (b) What is the charge on P2? (c) If P4 is now connected to the positive terminal, what is the capacitance of the four-plate system P1P2P3P4? (d) What is the charge on P4?arrow_forward
- (a) How much charge can be placed on a capacitor with air between the plates before it breaks down if the area of each plate is 5.00 cm2? (b) Find the maximum charge if polystyrene is used between the plates instead of air. Assume the dielectric strength of air is 3.00 106 V/m and that of polystyrene is 24.0 106 V/m.arrow_forwarda parallel-plate capacitor with area 0.200 m2 and plate separation of 3.00 mm is connected to a 6.00-V battery. (a) What is the capacitance? (b) How much charge is stored on the plates? (c) What is the electric field between the plates? (d) Find the magnitude of the charge density on each plate. (e) Without disconnecting the battery, the plates are moved farther apart. Qualitatively, what happens to each of the previous answers?arrow_forwardA spherical capacitor is formed from two concentric spherical conducting spheres separated by vacuum. Tire inner sphere has radius 12.5 cm and the outer sphere has radius 14.8 cm. A potential difference of 120 V is applied to the capacitor, (a) What is the capacitance of the capacitor? tb) What is the magnitude of the electrical field at r = 12.6 cm, just outside the inner sphere? (c) What is the magnitude of the electrical field at r = 14.7 cm, just inside the outer sphere? (d) For a parallel-plate capacitor the electrical field is uniform in the region between the plates, except near the edges of the plates. Is this also true for a spherical capacitor?arrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning