Consider an equilateral triangle with each side having length 2k.
(a) What is the measure of each angle?
(b) Label one angle A. Drop a perpendicular from A to the side opposite A. Two 30°
(c) What is the length of the perpendicular in part (b)?
(d) From the results of parts (a)-(c), complete the following statement:
In a 30°-60° right triangle, the hypotenuse is always _______ times as long as the shorter leg, and the longer leg has a length that is _______ times as long as that of the shorter leg. Also, the shorter leg is opposite the _______ angle, and the longer leg is opposite the _____ angle.
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
Trigonometry plus MyLab Math with Pearson eText -- Access Card Package (11th Edition)
- Find the polar representations of a point which has -л<О≤л and is symmetrical to the given point with respect to the origin. (√2.- 1/1) π 4arrow_forwardFind the area of a triangle formed by the pole and the two points with polar coordinates. π A 5, - B(10, 2π)arrow_forwardAre the steps I made allowed? I am verifying a trig identity.arrow_forward
- Define with normS (n) (22) | I(M) WK.P() ⑥HK (~) H' (~~) and H) 2² (^_^)arrow_forwardPlease provide a clear and detailed solutionarrow_forwardPlot each point given its polar coordinates. Then, give another pair of polar coordinates for the same point with the opposite radius and angle 0 ≤ 0 < 2π (or 0 ≤ 0 < 360°). (-6, 120°)arrow_forward
- Find two additional polar representations of the given point such that one has the same sign as r but the opposite sign of 0, and the other has the opposite sign of r but the same sign as 0. 3, - π 6arrow_forwarde consider the problem -((1+x)))= 0 XE U(0) = 0, 'U(1)=\@Sind the analytical sol and he Find the Variational form and find Matrix A and b? consider the Variational form a (u,v)-(SV) where acu,v) = vdx prove that YVE H. (0,1),i=1, 2, \\-\ a(vi)=-v(x-1)+2V(xi)-(X;+1)] Where Vn is usual basis of hat functions. Consider the Problem Au=f and u= du=0 0 a with bilinear formalu,v) = SAU. AV r Prove that alu, v). V-ellPitic. and aluv) is continuous..arrow_forwardThe resistance, R, of a conductor is directly proportional to its length, 7. If the resistance. of 3.80 km of a certain transmission line is 121 ohms, find the resistance of 74.9 km of that line. Round your answer to 3 significant digits. Ωarrow_forward
- Elementary AlgebraAlgebraISBN:9780998625713Author:Lynn Marecek, MaryAnne Anthony-SmithPublisher:OpenStax - Rice UniversityTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningElementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellMathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,