Physics
Physics
5th Edition
ISBN: 9781260487008
Author: GIAMBATTISTA, Alan
Publisher: MCGRAW-HILL HIGHER EDUCATION
bartleby

Videos

Question
Book Icon
Chapter 21, Problem 59P

(a)

To determine

The angular resonant frequency.

(a)

Expert Solution
Check Mark

Answer to Problem 59P

The angular resonant frequency is 745rad/s_.

Explanation of Solution

The diagram for the RLC circuit is given figure 1:

  Physics, Chapter 21, Problem 59P

Write the equation of resonant frequency.

  ω0=1LC                                                                                              (I)

Here, ω0 is the resonant frequency, L is the inductance and C is the capacitance.

Conclusion:

Substitute 0.300H for L and 6.00μF for C in equation (I) to find ω0.

  ω0=1(0.300H)[(6.00μF)(1×106F1μF)]=1(0.300H)(6.00×106F)=745rad/s

Thus, the angular resonant frequency is 745rad/s_.

(b)

To determine

The value of resistance in the circuit.

(b)

Expert Solution
Check Mark

Answer to Problem 59P

The value of resistance in the circuit is 790Ω_.

Explanation of Solution

Write the equation of resistance.

  R=εmI                                                                                                               (II)

Here, R is the resistance, εm is the peak voltage and I is the current.

Conclusion:

Substitute 440V for εm and 0.560A for I in equation (II) to find R.

  R=(440V)(0.560A)=790Ω

Thus, the value of resistance in the circuit is 790Ω_.

(c)

To determine

The peak voltage across the resistor, inductor and capacitor at resonant frequency.

(c)

Expert Solution
Check Mark

Answer to Problem 59P

The peak voltage across the resistor, inductor and capacitor at resonant frequency are respectively 440V,125Vand125V_.

Explanation of Solution

Write the equation for the peak voltage across resistor.

  VR=εm                                                                                                             (III)

Here, VR is the peak voltage across resistor.

Write the equation of voltage across inductor.

  VL=IXL                                                                                                            (IV)

Here, VL is the voltage across inductor, I is the current and XL is the inductive reactance.

Write the equation of the inductive reactance.

  XL=ωoL                                                                                                        (V)

Here, L is the inductance.

Rewrite the expression for the peak voltage across inductor by using equation (I), (IV) and (V).

  VL=ILC                                                                                                         (VI)

At resonant frequency, the voltage across inductor and capacitor will be same.

Write the equation for the peak voltage across capacitor.

  VC=VL                                                                                                            (VII)

Here, VC is the peak voltage across capacitor.

Conclusion:

Substitute 440V for εm in equation (III) to find VR.

  VR=440V

Substitute 0.300H for L, 0.560A for I and 6.00μF for C in equation (VI) to find VL.

  VL=(0.560A)((0.300H))[(6.00μF)(1×106F1μF)]=(0.560A)((0.300H))(6.00×106F)=125V

Substitute 125V for VL in equation (VII) to find VC.

  VC=125V

Therefore, the peak voltage across the resistor, inductor and capacitor at resonant frequency are respectively 440V,125Vand125V_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Use the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: Incident ray at A Note: This diagram is not to scale. a Air (n = 1.00) Water (n = 1.34) 1) Determine the angle of refraction of the ray of light in the water. B
Hi can u please solve
6. Bending a lens in OpticStudio or OSLO. In either package, create a BK7 singlet lens of 10 mm semi-diameter and with 10 mm thickness. Set the wavelength to the (default) 0.55 microns and a single on-axis field point at infinite object distance. Set the image distance to 200 mm. Make the first surface the stop insure that the lens is fully filled (that is, that the entrance beam has a radius of 10 mm). Use the lens-maker's equation to calculate initial glass curvatures assuming you want a symmetric, bi-convex lens with an effective focal length of 200 mm. Get this working and examine the RMS spot size using the "Text" tab of the Spot Diagram analysis tab (OpticStudio) or the Spd command of the text widnow (OSLO). You should find the lens is far from diffraction limited, with a spot size of more than 100 microns. Now let's optimize this lens. In OpticStudio, create a default merit function optimizing on spot size.Then insert one extra line at the top of the merit function. Assign the…

Chapter 21 Solutions

Physics

Ch. 21 - Prob. 1CQCh. 21 - 2. Electric power is distributed long distances...Ch. 21 - 3. Explain the differences between average...Ch. 21 - Prob. 4CQCh. 21 - Prob. 5CQCh. 21 - Prob. 6CQCh. 21 - Prob. 7CQCh. 21 - Prob. 8CQCh. 21 - Prob. 9CQCh. 21 - Prob. 11CQCh. 21 - Prob. 10CQCh. 21 - Prob. 13CQCh. 21 - Prob. 14CQCh. 21 - Prob. 15CQCh. 21 - Prob. 12CQCh. 21 - 18. Let’s examine the crossover network of Fig....Ch. 21 - Prob. 1MCQCh. 21 - Prob. 2MCQCh. 21 - Prob. 3MCQCh. 21 - Prob. 4MCQCh. 21 - Prob. 5MCQCh. 21 - Prob. 6MCQCh. 21 - Prob. 7MCQCh. 21 - Prob. 8MCQCh. 21 - Prob. 9MCQCh. 21 - 10. Which graph is correct if the circuit...Ch. 21 - 1. A lightbulb is connected to a 120 V (rms), 60...Ch. 21 - A European outlet supplies 220 V (rms) at 50 Hz....Ch. 21 - 3. A 1500 w heater runs on 120 V rms. What is the...Ch. 21 - 4. A circuit breaker trips when the rms current...Ch. 21 - 5. A 1500 W electric hair dryer is designed to...Ch. 21 - 6. A 4.0 kW heater is designed to be connected to...Ch. 21 - 7. (a) What rms current is drawn by a 4200 w...Ch. 21 - 8. A television set draws an rms current of 2.50 A...Ch. 21 - 9. The instantaneous sinusoidal emf from an ac...Ch. 21 - 10. A hair dryer has a power rating of 1200 W at...Ch. 21 - Prob. 11PCh. 21 - 12. A variable capacitor with negligible...Ch. 21 - 13. At what frequency is the reactance of a 6.0...Ch. 21 - 14. A 0.400 μF capacitor is connected across the...Ch. 21 - 15. A 0.250 μF capacitor is connected to a 220 V...Ch. 21 - 16. A capacitor is connected across the terminals...Ch. 21 - 17. Show, from XC = l/(ωC), that the units of...Ch. 21 - 18. The charge on a capacitor in an ac circuit is...Ch. 21 - 19. A capacitor (capacitance = C) is connected to...Ch. 21 - 20. Three capacitors (2.0 μF, 3.0 μF, 6.0 μF) are...Ch. 21 - 21. A capacitor and a resistor are connected in...Ch. 21 - 22. A variable inductor with negligible resistance...Ch. 21 - Prob. 23PCh. 21 - Prob. 24PCh. 21 - 25. A solenoid with a radius of 8.0 × 10−3 m and...Ch. 21 - 26. A 4.00 mH inductor is connected to an ac...Ch. 21 - 27. Two ideal inductors (0.10 H, 0.50 H) are...Ch. 21 - Prob. 28PCh. 21 - 29. Suppose that an ideal capacitor and an ideal...Ch. 21 - 30. The voltage across an inductor and the...Ch. 21 - 31. Make a figure analogous to Fig. 21.5 for an...Ch. 21 - 32. A 25.0 mH inductor, with internal resistance...Ch. 21 - 33. An inductor has an impedance of 30.0 Ω and a...Ch. 21 - 34. A 6.20 mH inductor is one of the elements in...Ch. 21 - 35. A series combination of a resistor and a...Ch. 21 - 36. A 300.0 Ω resistor and a 2.5 μF capacitor are...Ch. 21 - Prob. 37PCh. 21 - 38. (a) Find the power factor for the RLC series...Ch. 21 - 39. A computer draws an rms current of 2.80 A at...Ch. 21 - 40. An RLC series circuit is connected to an ac...Ch. 21 - 41. An ac circuit has a single resistor,...Ch. 21 - 42. An RLC circuit has a resistance of 10.0 Ω,...Ch. 21 - 43. An ac circuit contains a 12.5 Ω resistor, a...Ch. 21 - 44. ✦ A 0.48 μF capacitor is connected in series...Ch. 21 - 45. A series combination of a 22.0 mH inductor...Ch. 21 - Prob. 46PCh. 21 - 47. A 150 Ω resistor is in series with a 0.75...Ch. 21 - 48. A series circuit with a resistor and a...Ch. 21 - 49. (a) What is the reactance of a 10.0 mH...Ch. 21 - Prob. 50PCh. 21 - Prob. 51PCh. 21 - Prob. 52PCh. 21 - Prob. 53PCh. 21 - Prob. 54PCh. 21 - 55. To test hearing at various frequencies, a...Ch. 21 - Prob. 56PCh. 21 - Prob. 57PCh. 21 - Prob. 58PCh. 21 - Prob. 59PCh. 21 - Prob. 60PCh. 21 - Prob. 61PCh. 21 - Prob. 62PCh. 21 - Prob. 63PCh. 21 - Prob. 64PCh. 21 - Prob. 65PCh. 21 - Prob. 66PCh. 21 - Prob. 68PCh. 21 - Prob. 67PCh. 21 - Prob. 69PCh. 21 - 70. The phasor diagram for a particular RLC series...Ch. 21 - Prob. 71PCh. 21 - Prob. 72PCh. 21 - Prob. 73PCh. 21 - Prob. 74PCh. 21 - Prob. 75PCh. 21 - Prob. 76PCh. 21 - Prob. 77PCh. 21 - Prob. 78PCh. 21 - Prob. 79PCh. 21 - Prob. 80PCh. 21 - Prob. 81PCh. 21 - Prob. 82PCh. 21 - Prob. 83PCh. 21 - Prob. 84PCh. 21 - 85. (a) When the resistance of an RLC series...Ch. 21 - Prob. 86PCh. 21 - Prob. 87PCh. 21 - Prob. 88PCh. 21 - Prob. 89PCh. 21 - Prob. 90PCh. 21 - Prob. 91PCh. 21 - Prob. 92PCh. 21 - In an RLC circuit, these three elements are...Ch. 21 - Prob. 94PCh. 21 - Prob. 95PCh. 21 - Prob. 96PCh. 21 - Prob. 97PCh. 21 - Prob. 98PCh. 21 - Prob. 100PCh. 21 - Prob. 99P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Introduction To Alternating Current; Author: Tutorials Point (India) Ltd;https://www.youtube.com/watch?v=0m142qAZZpE;License: Standard YouTube License, CC-BY