Gas mileage is tested for a car under different driving conditions. At lower speeds, the car is driven in stop-and-go traffic. At higher speeds, the car must overcome more wind resistance. The variable x given in the table represents the speed (in mph) for a compact car, and m x represents the gas mileage (in mpg). a. Use regression to find a quadratic function to model the data. b. At what speed is the gas mileage the greatest? Round to the neatest mile per hour. c. What is the maximum gas mileage? Round to the nearest mile per gallon.
Gas mileage is tested for a car under different driving conditions. At lower speeds, the car is driven in stop-and-go traffic. At higher speeds, the car must overcome more wind resistance. The variable x given in the table represents the speed (in mph) for a compact car, and m x represents the gas mileage (in mpg). a. Use regression to find a quadratic function to model the data. b. At what speed is the gas mileage the greatest? Round to the neatest mile per hour. c. What is the maximum gas mileage? Round to the nearest mile per gallon.
Solution Summary: The author explains how to determine the quadratic function of the following data using Ti-83 graphing calculator.
Gas mileage is tested for a car under different driving conditions. At lower speeds, the car is driven in stop-and-go traffic. At higher speeds, the car must overcome more wind resistance. The variable x given in the table represents the speed (in mph) for a compact car, and
m
x
represents the gas mileage (in mpg).
a. Use regression to find a quadratic function to model the data.
b. At what speed is the gas mileage the greatest? Round to the neatest mile per hour.
c. What is the maximum gas mileage? Round to the nearest mile per gallon.
Ministry of Higher Education &
Scientific Research
Babylon University
College of Engineering -
Al musayab
Automobile Department
Subject :Engineering Analysis
Time: 2 hour
Date:27-11-2022
کورس اول تحليلات
تعمیر )
1st month exam / 1st semester (2022-2023)/11/27
Note: Answer all questions,all questions have same degree.
Q1/: Find the following for three only.
1-
4s
C-1
(+2-3)2 (219) 3.0 (6+1)) (+3+5)
(82+28-3),2-
,3-
2-1
4-
Q2/:Determine the Laplace transform of the function t sint.
Q3/: Find the Laplace transform of
1,
0≤t<2,
-2t+1,
2≤t<3,
f(t) =
3t,
t-1,
3≤t 5,
t≥ 5
Q4: Find the Fourier series corresponding to the function
0
-5
Ministry of Higher Education &
Scientific Research
Babylon University
College of Engineering -
Al musayab
Subject :Engineering Analysis
Time: 80 min
Date:11-12-2022
Automobile Department
2nd month exam / 1" semester (2022-2023)
Note: Answer all questions,all questions have same degree.
کورس اول
شعر 3
Q1/: Use a Power series to solve the differential equation:
y" - xy = 0
Q2/:Evaluate using Cauchy's residue theorem,
sinnz²+cosz²
dz, where C is z = 3
(z-1)(z-2)
Q3/:Evaluate
dz
(z²+4)2
Where C is the circle /z-i/-2,using Cauchy's residue theorem.
Examiner: Dr. Wisam N. Hassan
Ministry of Higher Education &
Scientific Research
Babylon University
College of Engineering -
Al musayab
Subject :Engineering Analysis
Time: 80 min
Date:11-12-2022
Automobile Department
2nd month exam / 1" semester (2022-2023)
Note: Answer all questions,all questions have same degree.
کورس اول
شعر 3
Q1/: Use a Power series to solve the differential equation:
y" - xy = 0
Q2/:Evaluate using Cauchy's residue theorem,
sinnz²+cosz²
dz, where C is z = 3
(z-1)(z-2)
Q3/:Evaluate
dz
(z²+4)2
Where C is the circle /z-i/-2,using Cauchy's residue theorem.
Examiner: Dr. Wisam N. Hassan
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Correlation Vs Regression: Difference Between them with definition & Comparison Chart; Author: Key Differences;https://www.youtube.com/watch?v=Ou2QGSJVd0U;License: Standard YouTube License, CC-BY
Correlation and Regression: Concepts with Illustrative examples; Author: LEARN & APPLY : Lean and Six Sigma;https://www.youtube.com/watch?v=xTpHD5WLuoA;License: Standard YouTube License, CC-BY