In Exercises 51-54, graph the given square root functions, f and g, in the same rectangular coordinate system . Use the integer values of x given to the right of each function to obtain ordered pairs. Because only nonnegative numbers have square roots that are real numbers, be sure that each graph appears only for values of x that cause the expression under the radical sign to be greater than or equal to zero. Once you have obtained your graphs, describe how the graph of g is related to the graph of f. f ( x ) = x ( x = 0 , 1 , 4 , 9 ) and g ( x ) = x − 1 ( x = 1 , 2 , 5 , 10 )
In Exercises 51-54, graph the given square root functions, f and g, in the same rectangular coordinate system . Use the integer values of x given to the right of each function to obtain ordered pairs. Because only nonnegative numbers have square roots that are real numbers, be sure that each graph appears only for values of x that cause the expression under the radical sign to be greater than or equal to zero. Once you have obtained your graphs, describe how the graph of g is related to the graph of f. f ( x ) = x ( x = 0 , 1 , 4 , 9 ) and g ( x ) = x − 1 ( x = 1 , 2 , 5 , 10 )
Solution Summary: The author explains the function f(x)=sqrt
In Exercises 51-54, graph the given square root functions, f and g, in the same rectangular coordinate system. Use the integer values of x given to the right of each function to obtain ordered pairs. Because only nonnegative numbers have square roots that are real numbers, be sure that each graph appears only for values of x that cause the expression under the radical sign to be greater than or equal to zero. Once you have obtained your graphs, describe how the graph of g is related to the graph of f.
f
(
x
)
=
x
(
x
=
0
,
1
,
4
,
9
)
and
g
(
x
)
=
x
−
1
(
x
=
1
,
2
,
5
,
10
)
System that uses coordinates to uniquely determine the position of points. The most common coordinate system is the Cartesian system, where points are given by distance along a horizontal x-axis and vertical y-axis from the origin. A polar coordinate system locates a point by its direction relative to a reference direction and its distance from a given point. In three dimensions, it leads to cylindrical and spherical coordinates.
The 2x2 linear system of equations -2x+4y = 8 and 4x-3y = 9 was put into the following
-2 4
8
augmented matrix:
4
-3
9
This augmented matrix is then converted to row echelon form. Which of the following matrices is the
appropriate row echelon form for the given augmented matrix?
0
Option 1:
1
11
-2
Option 2:
4
-3 9
Option 3:
10
܂
-2
-4
5
25
1
-2
-4
Option 4:
0 1
5
1 -2
Option 5:
0
0
20
-4
5
○ Option 1 is the appropriate row echelon form.
○ Option 2 is the appropriate row echelon form.
○ Option 3 is the appropriate row echelon form.
○ Option 4 is the appropriate row echelon form.
○ Option 5 is the appropriate row echelon form.
Let matrix A have order (dimension) 2x4 and let matrix B have order (dimension) 4x4.
What results when you compute A+B?
The resulting matrix will have dimensions of 2x4.
○ The resulting matrix will be a single number (scalar).
The resulting matrix will have dimensions of 4x4.
A+B is undefined since matrix A and B do not have the same dimensions.
If
-1
"[a446]-[254]
4b
=
-1
, find the values of a and b.
○ There is no solution for a and b.
○ There are infinite solutions for a and b.
O a=3, b=3
O a=1, b=2
O a=2, b=1
O a=2, b=2
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.