
Starting Out with C++ from Control Structures to Objects Plus MyLab Programming with Pearson eText -- Access Card Package (9th Edition)
9th Edition
ISBN: 9780134544847
Author: Tony Gaddis
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 21, Problem 3PC
Program Plan Intro
Leaf Counter
Program Plan:
Main.cpp:
- Include required header files.
- Inside the “main ()” function,
- Display the number of leaf nodes by calling the function “num_LeafNodes ()”.
- Insert nodes into the binary tree by using the function “insert_Node ()”.
- Display those nodes by using the function “display_InOrder ()”.
- Now, display the number of leaf nodes by calling the function “num_LeafNodes ()”.
- Delete two nodes from the binary tree by using the function “remove ()”.
- Display remaining nodes by using the function “display_InOrder ()”.
- Finally, display the number of leaf nodes by calling the function “num_LeafNodes ()”.
BinaryTree.h:
- Include required header files.
- Create a class template.
- Declare a class named “BinaryTree”. Inside the class,
- Inside the “private” access specifier,
- Give the structure declaration for the creation of node.
- Create an object for the template.
- Create two pointers named “left_Node” and “right_Node” to access the value left and right nodes respectively.
- Declare a variable “leafCount”.
- Create a pointer named “root” to access the value of root node.
- Give function declaration for “insert ()”, “destroy_SubTree ()”, “delete_Node ()”, “make_Deletion ()”, “display_InOrder ()”, “display_PreOrder ()”, “display_PostOrder ()”, “count_Nodes ()”, “count_Leaves ()”.
- Give the structure declaration for the creation of node.
- Inside “public” access specifier,
- Give the definition for constructor and destructor.
- Give function declaration.
- Inside the “private” access specifier,
- Declare template class.
- Give function definition for “insert ()”.
- Check if “nodePtr” is null.
- If the condition is true then, insert node.
- Check if value of new node is less than the value of node pointer
- If the condition is true then, Insert node to the left branch by calling the function “insert ()” recursively.
- Else
- Insert node to the right branch by calling the function “insert ()” recursively.
- Check if “nodePtr” is null.
- Declare template class.
- Give function definition for “insert_Node ()”.
- Create a pointer for new node.
- Assign the value to the new node.
- Make left and right node as null
- Call the function “insert ()” by passing parameters “root” and “newNode”.
- Declare template class.
- Give function definition for “destroy_SubTree ()”.
- Check if the node pointer points to left node
- Call the function recursively to delete the left sub tree.
- Check if the node pointer points to the right node
- Call the function recursively to delete the right sub tree.
- Delete the node pointer.
- Check if the node pointer points to left node
- Declare template class.
- Give function definition for “search_Node ()”.
- Assign false to the Boolean variable “status”.
- Assign root pointer to the “nodePtr”.
- Do until “nodePtr” exists.
- Check if the value of node pointer is equal to “num”.
- Assign true to the Boolean variable “status”
- Check if the number is less than the value of node pointer.
- Assign left node pointer to the node pointer.
- Else
- Assign right node pointer to the node pointer.
- Check if the value of node pointer is equal to “num”.
- Return the Boolean variable.
- Declare template class.
- Give function definition for “remove ()”.
- Call the function “delete_Node ()”
- Declare template class.
- Give function definition for “delete_Node ()”
- Check if the number is less than the node pointer value.
- Call the function “delete_Node ()” recursively.
- Check if the number is greater than the node pointer value.
- Call the function “delete_Node ()” recursively.
- Else,
- Call the function “make_Deletion ()”.
- Check if the number is less than the node pointer value.
- Declare template class.
- Give function definition for “make_Deletion ()”
- Create pointer named “tempPtr”.
- Check if the nodePtr is null.
- If the condition is true then, print “Cannot delete empty node.”
- Check if right node pointer is null.
- If the condition is true then,
- Make the node pointer as the temporary pointer.
- Reattach the left node child.
- Delete temporary pointer.
- If the condition is true then,
- Check is left node pointer is null
- If the condition is true then,
- Make the node pointer as the temporary pointer.
- Reattach the right node child.
- Delete temporary pointer.
- If the condition is true then,
- Else,
- Move right node to temporary pointer
- Reach to the end of left-Node using “while” condition.
- Assign left node pointer to temporary pointer.
- Reattach left node sub tree.
- Make node pointer as the temporary pointer.
- Reattach right node sub tree
- Delete temporary pointer.
- Declare template class.
- Give function definition for “display_InOrder ()”.
- Check if the node pointer exists.
- Call the function “display_InOrder ()” recursively.
- Print the value
- Call the function “display_InOrder ()” recursively.
- Check if the node pointer exists.
- Declare template class.
- Give function definition for “display_PreOrder ()”.
- Print the value.
- Call the function “display_PreOrder ()” recursively.
- Call the function “display_PreOrder ()” recursively.
- Declare template class.
- Give function definition for “display_PostOrder ()”.
- Call the function “display_PostOrder ()” recursively.
- Call the function “display_PostOrder ()” recursively.
- Print value
- Declare template class.
- Give function definition for “numNodes ()”.
- Call the function “count_Nodes ()”.
- Declare template class.
- Give function definition for “count_Nodes ()”.
- Declare a variable named “count”.
- Check if the node pointer is null
- Assign 0 to count.
- Else,
- Call the function “count_Nodes ()” recursively.
- Return the variable “count”.
- Declare template class.
- Give function definition for “num_LeafNodes()”.
- Assign 0 to “leafCount”
- Call the function “count_Leaves ()”
- Return the variable.
- Declare template class.
- Give function definition for “count_Leaves()”.
- Call the function “count_Leaves ()” recursively by passing left node pointer as the parameter.
- Call the function “count_Leaves ()” recursively by passing right node pointer as the parameter.
- Check if left and right node pointers are null.
- Increment the variable “leafCount”.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
how are you
need help with thi
Next, you are going to combine everything you've learned about HTML and CSS to make a static site portfolio piece.
The page should first introduce yourself. The content is up to you, but should include a variety of HTML elements, not just text.
This should be followed by an online (HTML-ified) version of your CV (Resume).
The following is a minimum list of requirements you should have across all your content:
Both pages should start with a CSS reset (imported into your CSS, not included in your HTML)
Semantic use of HTML5 sectioning elements for page structure
A variety other semantic HTML elements
Meaningful use of Grid, Flexbox and the Box Model as appropriate for different layout components
A table
An image
Good use of CSS Custom Properties (variables)
Non-trivial use of CSS animation
Use of pseudeo elements
An accessible colour palette
Use of media queries
The focus of this course is development, not design. However, being able to replicate a provided design…
Using the notation
Chapter 21 Solutions
Starting Out with C++ from Control Structures to Objects Plus MyLab Programming with Pearson eText -- Access Card Package (9th Edition)
Ch. 21.1 - Prob. 21.1CPCh. 21.1 - Prob. 21.2CPCh. 21.1 - Prob. 21.3CPCh. 21.1 - Prob. 21.4CPCh. 21.1 - Prob. 21.5CPCh. 21.1 - Prob. 21.6CPCh. 21.2 - Prob. 21.7CPCh. 21.2 - Prob. 21.8CPCh. 21.2 - Prob. 21.9CPCh. 21.2 - Prob. 21.10CP
Ch. 21.2 - Prob. 21.11CPCh. 21.2 - Prob. 21.12CPCh. 21 - Prob. 1RQECh. 21 - Prob. 2RQECh. 21 - Prob. 3RQECh. 21 - Prob. 4RQECh. 21 - Prob. 5RQECh. 21 - Prob. 6RQECh. 21 - Prob. 7RQECh. 21 - Prob. 8RQECh. 21 - Prob. 9RQECh. 21 - Prob. 10RQECh. 21 - Prob. 11RQECh. 21 - Prob. 12RQECh. 21 - Prob. 13RQECh. 21 - Prob. 14RQECh. 21 - Prob. 15RQECh. 21 - Prob. 16RQECh. 21 - Prob. 17RQECh. 21 - Prob. 18RQECh. 21 - Prob. 19RQECh. 21 - Prob. 20RQECh. 21 - Prob. 21RQECh. 21 - Prob. 22RQECh. 21 - Prob. 23RQECh. 21 - Prob. 24RQECh. 21 - Prob. 25RQECh. 21 - Prob. 1PCCh. 21 - Prob. 2PCCh. 21 - Prob. 3PCCh. 21 - Prob. 4PCCh. 21 - Prob. 5PCCh. 21 - Prob. 6PCCh. 21 - Prob. 7PCCh. 21 - Prob. 8PC
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Similar questions
- you can select multipy optionsarrow_forwardFor each of the following, decide whether the claim is True or False and select the True ones: Suppose we discover that the 3SAT can be solved in worst-case cubic time. Then it would mean that all problems in NP can also be solved in cubic time. If a problem can be solved using Dynamic Programming, then it is not NP-complete. Suppose X and Y are two NP-complete problems. Then, there must be a polynomial-time reduction from X to Y and also one from Y to X.arrow_forwardMaximum Independent Set problem is known to be NP-Complete. Suppose we have a graph G in which the maximum degree of each node is some constant c. Then, is the following greedy algorithm guaranteed to find an independent set whose size is within a constant factor of the optimal? 1) Initialize S = empty 2) Arbitrarily pick a vertex v, add v to S delete v and its neighbors from G 3) Repeat step 2 until G is empty Return S Yes Noarrow_forward
- Please help me answer this coding question in the images below for me(it is not a graded question):write the code using python and also provide the outputs requiredarrow_forwardWhat does the reduction showing Vertex Cover (VC) is NP-Complete do: Transforms any instance of VC to an instance of 3SAT Transforms any instance of 3SAT to an instance of VC Transforms any instance of VC to an instance of 3SAT AND transforms any instance of 3SAT to an instance of VC none of the abovearrow_forwardPlease assist me by writing out the code with its output (in python) using the information provided in the 2 images below.for the IP Address, it has been changed to: 172.21.5.204the serve code has not been open yet though but the ouput must be something along these lines(using command prompt):c:\Users\japha\Desktop>python "Sbongakonke.py"Enter the server IP address (127.0.0.1 or 172.21.5.199): 172.21.5.204Enter your student number: 4125035Connected to server!It's your turn to pour! Enter the amount to your pour (in mL):Please work it out until it gets the correct outputsNB: THIS QUESTION IS NOT A GRADED QUESTIONarrow_forward
- need help with a html code and css code that will match this image.arrow_forwardneed help with a html code and css code that will match this image. Part B - A Navigation Part B is the navigation component of a page. Information you need includes: Color Codes: Visiting links: #ff6666 Unvisited links: #ccff66 Hovered links: white Search box: #2ec4b6 rebeccapurple white Font: Google Font (Roboto) Icons: Font Awesome (fa-quidditch, fa-search) This is a flexbox based navigation menu. Other then padding, all spacing/positioning should be controlled using flex properties. The home link in the nav should point to your assignment file (to triggers visited styling). In the "state" screenshot below, Home is visited, Services is hovered (the mouse doesn't show up in the screenshot) and Products is unvisited.arrow_forwardMGMT SS STATS, an umbrella body that facilitates and serves various Social Security Organizations/Departments within the Caribbean territories, stood poised to meet the needs of its stakeholders by launching an online database. The database will provide members and the public access to the complete set of services that can (also) be initiated face-to-face, and it will provide managed, private, secure access to a repository of public and/or personal information. Ideally, the database will have basic details of pension plans recorded in the registry, member plan statistics, and cash inflows and outflows from pension funds.For example, insured persons accumulate contributions. Records for these persons will include information on the insured persons able to acquire various benefits once work is interrupted due to sickness, death, retirement, and maternity or employment injury. They will also include information on pensions such as invalidity, disability, and survivors that stem from one…arrow_forward
- Why all appvif i want to sign in its required phone number why not using google or apple its make me frustratedarrow_forwardWhy is the accuracy of time important in data visualizations? Detail a scenario from your professional experience in which time was structured poorly in a data visualization. How did this affect the understanding of the data presented? How do you think this error or oversight occurred?arrow_forwardWrite the KeanStudent class. The UML diagram of the class is represented below: KeanStudent - fullName: String - keanID: int -keanEmailAddress: String cellPhoneNumber: String + numberOfStudent: int + KeanStudent() + KeanStudent(fullName: String, keanID: int, keanEmailAddress: String, cellPhoneNumber: String) +getFullName(): String +setFullName(newFullName: String): void +getKeanIDO): int +getKeanEmailAddress(): String +getCellPhoneNumber(): String + setCellPhoneNumber(newCellPhoneNumber: String): void +toString(): String 1. Implement the KeanStudent class strictly according to its UML one-to-one (do not include anything extra, do not miss any data fields or methods) 2. Implement a StudentTest class to test the class KeanStudent you just created. • Create two KeanStudent objects using a no-args constructor and one from the constructor with all fields. o Print the contents of both objects. 。 Print numberOfStudent. 3. Add comments to your program (mark where data fields, constructors,…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- C++ Programming: From Problem Analysis to Program...Computer ScienceISBN:9781337102087Author:D. S. MalikPublisher:Cengage LearningNew Perspectives on HTML5, CSS3, and JavaScriptComputer ScienceISBN:9781305503922Author:Patrick M. CareyPublisher:Cengage LearningEBK JAVA PROGRAMMINGComputer ScienceISBN:9781337671385Author:FARRELLPublisher:CENGAGE LEARNING - CONSIGNMENT
- Programming Logic & Design ComprehensiveComputer ScienceISBN:9781337669405Author:FARRELLPublisher:CengageC++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology PtrMicrosoft Visual C#Computer ScienceISBN:9781337102100Author:Joyce, Farrell.Publisher:Cengage Learning,

C++ Programming: From Problem Analysis to Program...
Computer Science
ISBN:9781337102087
Author:D. S. Malik
Publisher:Cengage Learning

New Perspectives on HTML5, CSS3, and JavaScript
Computer Science
ISBN:9781305503922
Author:Patrick M. Carey
Publisher:Cengage Learning

EBK JAVA PROGRAMMING
Computer Science
ISBN:9781337671385
Author:FARRELL
Publisher:CENGAGE LEARNING - CONSIGNMENT
Programming Logic & Design Comprehensive
Computer Science
ISBN:9781337669405
Author:FARRELL
Publisher:Cengage

C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr

Microsoft Visual C#
Computer Science
ISBN:9781337102100
Author:Joyce, Farrell.
Publisher:Cengage Learning,