BEGINNING STAT.-SOFTWARE+EBOOK ACCESS
BEGINNING STAT.-SOFTWARE+EBOOK ACCESS
2nd Edition
ISBN: 9781941552506
Author: WARREN
Publisher: HAWKES LRN
Question
Book Icon
Chapter 2.1, Problem 2E

(a)

To determine

To find:

The class width for the given frequency distribution.

(a)

Expert Solution
Check Mark

Answer to Problem 2E

Solution:

The class width of the given frequency distribution is 0.028 which is approximately equal to 0.03.

Explanation of Solution

Formula used:

The formula to calculate the class width is,

Classwidth=UpperlimitLowerlimitNumberofclass

Given:

The table is given as,

Braking Times for Vehicles at
60 mph (in minutes)
Class Frequency
0.050.07 12
0.080.10 15
0.110.13 14
0.140.16 15
0.170.19 14

The upper limit of the distribution is given as 0.19 and the lower limit is given as 0.05. The number of classes is 5.

Calculation:

The smallest number that can belong to a particular class is termed as lower class limit and the largest number that can belong to a particular class is termed as upper class limit.

Substitute 0.19 for upper limit and 0.05 for lower limit and 5 for the number of classes in the formula,

Classwidth=0.190.055=0.145=0.0280.03

(b)

To determine

To find:

The class boundary for each class of the given frequency distribution.

(b)

Expert Solution
Check Mark

Answer to Problem 2E

Solution:

The class boundary for each class of the given frequency distribution is shown in Table

Class Frequency Class boundaries
0.050.07 12 0.0450.075
0.080.10 15 0.0750.105
0.110.13 14 0.1050.135
0.140.16 15 0.1350.165
0.170.19 14 0.1650.195

Explanation of Solution

Formula used:

The formula to calculate the class boundary is,

Classboundary=Upperlimitofoneclass+Lowerlimitofnextclass2

Given:

The table is given as,

Braking Times for Vehicles at
60 mph (in minutes)
Class Frequency
0.050.07 12
0.080.10 15
0.110.13 14
0.140.16 15
0.170.19 14

Calculation:

It is known that the smallest number that can belong to a particular class is termed as lower class limit and the largest number that can belong to a particular class is termed as upper class limit.

For the first class, since, the largest number is 0.07 and 0.08 is the smallest number in the next class, then, substitute 0.07 for upper limit and 0.08 for lower limit in the formula,

Classboundary=0.07+0.082=0.152=0.075

Continuing the same way, the class boundaries of all the five classes are shown in the table given below,

Table 1

Class Frequency Class boundaries
0.050.07 12 0.0450.075
0.080.10 15 0.0750.105
0.110.13 14 0.1050.135
0.140.16 15 0.1350.165
0.170.19 14 0.1650.195

(c)

To determine

To find:

The midpoint of each class for the given frequency distribution.

(c)

Expert Solution
Check Mark

Answer to Problem 2E

Solution:

The midpoint of each class for the given frequency distribution is shown in Table

Class Frequency Class boundaries Midpoint
0.050.07 12 0.0450.075 0.06
0.080.10 15 0.0750.105 0.09
0.110.13 14 0.1050.135 0.12
0.140.16 15 0.1350.165 0.15
0.170.19 14 0.1650.195 0.18

Explanation of Solution

Formula used:

The formula to calculate the midpoint of any class is,

Midpoint=Upperlimit+Lowerlimit2

Given:

The table is given as,

Braking Times for Vehicles at
60 mph (in minutes)
Class Frequency
0.050.07 12
0.080.10 15
0.110.13 14
0.140.16 15
0.170.19 14

Calculation:

The smallest number that can belong to a particular class is termed as lower class limit and the largest number that can belong to a particular class is termed as upper class limit.

For the first class,

Substitute 0.07 for upper limit and 0.05 for lower limit in the formula,

Midpoint=0.05+0.072=0.122=0.06

Continuing the same way, the midpoint of all the five classes are shown in the table given below,

Table 2

Class Frequency Class boundaries Midpoint
0.050.07 12 0.0450.075 0.06
0.080.10 15 0.0750.105 0.09
0.110.13 14 0.1050.135 0.12
0.140.16 15 0.1350.165 0.15
0.170.19 14 0.1650.195 0.18

(d)

To determine

To find:

The relative frequency of each class for the given frequency distribution.

(d)

Expert Solution
Check Mark

Answer to Problem 2E

Solution:

The relative frequency of each class for the given frequency distribution is shown in Table

Class Frequency Class boundaries Midpoint Relative frequency
0.050.07 12 0.0450.075 0.06 1270=17%
0.080.10 15 0.0750.105 0.09 1570=21%
0.110.13 14 0.1050.135 0.12 1470=20%
0.140.16 15 0.1350.165 0.15 1570=21%
0.170.19 14 0.1650.195 0.18 1470=20%

Explanation of Solution

Formula used:

The formula to calculate the relative frequency of any class is,

Relativefrequency=fN

Here N is the sum of the frequencies.

Given:

The table is given as,

Braking Times for Vehicles at
60 mph (in minutes)
Class Frequency
0.050.07 12
0.080.10 15
0.110.13 14
0.140.16 15
0.170.19 14

Calculation:

The sum of the frequencies is,

N=12+15+14+15+14=70

For the first class,

Substitute 12 for f and 70 for N in the formula,

Relative frequency=1270=0.171=17%

Continuing the same way, the relative frequency of all the five classes are shown in the table given below,

Table 3

Class Frequency Class boundaries Midpoint Relative frequency
0.050.07 12 0.0450.075 0.06 1270=17%
0.080.10 15 0.0750.105 0.09 1570=21%
0.110.13 14 0.1050.135 0.12 1470=20%
0.140.16 15 0.1350.165 0.15 1570=21%
0.170.19 14 0.1650.195 0.18 1470=20%

(e)

To determine

To find:

The cumulative frequency of each class for the given frequency distribution.

(e)

Expert Solution
Check Mark

Answer to Problem 2E

Solution:

The cumulative frequency of each class for the given frequency distribution is shown in Table

Class Frequency Class boundaries Midpoint Relative frequency Cumulative frequency
0.050.07 12 0.0450.075 0.06 1270=17% 12
0.080.10 15 0.0750.105 0.09 1570=21% 12+15=27
0.110.13 14 0.1050.135 0.12 1470=20% 27+14=41
0.140.16 15 0.1350.165 0.15 1570=21% 41+15=56
0.170.19 14 0.1650.195 0.18 1470=20% 56+14=70

Explanation of Solution

Formula used:

The cumulative frequency of any class is calculated by adding the frequency of that class and all the previous classes.

Given:

The table is given as,

Braking Times for Vehicles at
60 mph (in minutes)
Class Frequency
0.050.07 12
0.080.10 15
0.110.13 14
0.140.16 15
0.170.19 14

Calculation:

The cumulative frequency of all the five classes are shown in the table given below,

Table 4

Class Frequency Class boundaries Midpoint Relative frequency Cumulative frequency
0.050.07 12 0.0450.075 0.06 1270=17% 12
0.080.10 15 0.0750.105 0.09 1570=21% 12+15=27
0.110.13 14 0.1050.135 0.12 1470=20% 27+14=41
0.140.16 15 0.1350.165 0.15 1570=21% 41+15=56
0.170.19 14 0.1650.195 0.18 1470=20% 56+14=70

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A population that is uniformly distributed between a=0and b=10 is given in sample sizes ​50(   ​), ​100(   ​), ​250(   ​), and ​500(   ​). Find the sample mean and the sample standard deviations for the given data. Compare your results to the average of means for a sample of size​ 10, and use the empirical rules to analyze the sampling error. For each​ sample, also find the standard error of the mean using formula given below.   Standard Error of the Mean =sigma/Root  Complete the following table with the results from the sampling experiment. ​(Round to four decimal places as​ needed.) Sample Size Average of 8 Sample Means Standard Deviation of 8 Sample Means Standard Error 50       100       250       500
A survey of 250250 young professionals found that two dash thirdstwo-thirds of them use their cell phones primarily for​ e-mail. Can you conclude statistically that the population proportion who use cell phones primarily for​ e-mail is less than 0.720.72​? Use a​ 95% confidence interval.       Question content area bottom Part 1 The​ 95% confidence interval is left bracket nothing comma nothing right bracket0.60820.6082, 0.72510.7251. As 0.720.72 is within the limits   of the confidence​ interval, we cannot   conclude that the population proportion is less than 0.720.72. ​(Use ascending order. Round to four decimal places as​ needed.)
I need help with this problem and an explanation of the solution for the image described below. (Statistics: Engineering Probabilities)

Chapter 2 Solutions

BEGINNING STAT.-SOFTWARE+EBOOK ACCESS

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Text book image
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Text book image
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Text book image
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
Text book image
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Text book image
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman