![Statistics: Concepts and Controversies](https://www.bartleby.com/isbn_cover_images/9781464192937/9781464192937_largeCoverImage.gif)
(a)
To find: The method of simulating the proportion of an SRS of 25 adult Americans.
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 26E
Solution: The proportion of adults was simulated by considering the single digit lying between the values 0 and 9 in Table A, as the response of the adults.
Explanation of Solution
Calculation:
The possible responses for the number of Americans avoid drinking regular soda or pop will be designated as favorable (F) who avoid drinking and not favorable (NF) who do not avoid drinking.
By treating a single digit in the random number table as a response of an adult American, assign the response to the random digits from 0 to 9 as shown below:
Response of an adult | Digit |
Favorable (F) | 0, 1, 2, 3, 4, 5 |
Not favorable (NF) | 6, 7, 8, 9 |
After this, simulate the proportion of randomly selected 25 adult American’s as shown below:
Digit | 4 | 5 | 0 | 8 | 9 | 2 | 8 | 0 | 1 | 2 | 7 | 4 | 2 |
Response | F | F | F | NF | NF | F | NF | F | F | F | NF | F | F |
Digit | 7 | 5 | 6 | 2 | 8 | 0 | 5 | 9 | 1 | 3 | 7 | 1 | |
Response | NF | F | NF | F | NF | F | F | NF | F | F | NF | F |
Therefore, it can be concluded that the randomly selected 25 adult Americans were simulated by treating single digit as the response of an adult by using the random number table A.
(b)
To find: The sample proportion
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 26E
Solution: The sample proportion
Samples | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Number of favorable | 16 | 14 | 14 | 16 | 11 | 15 | 12 | 14 | 17 | 12 |
Sample proportion |
0.64 | 0.56 | 0.56 | 0.64 | 0.44 | 0.60 | 0.48 | 0.56 | 0.68 | 0.48 |
Explanation of Solution
Calculation:
By treating a single digit in the random number table as a response of an adult American, assign the response to the random digits from 0 to 9 as shown below:
Response of an adult | Digit |
Favorable (F) | 0, 1, 2, 3, 4, 5 |
Not favorable (NF) | 6, 7, 8, 9 |
Using the different lines from random number Table A, simulate the 10 randomly selected samples each of size 25. From the line 101, generate the random numbers for the sample 1. Similarly, from the line 102 to 110, generate the random numbers for the sample 2 to sample 10. The 10 samples are generated by using Table A and their corresponding responses are also mentioned as shown below:
Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 | |||||
Digit | Response | Digit | Response | Digit | Response | Digit | Response | Digit | Response |
1 | F | 7 | NF | 4 | F | 5 | F | 9 | NF |
9 | NF | 3 | F | 5 | F | 2 | F | 5 | F |
2 | F | 6 | NF | 4 | F | 7 | NF | 5 | F |
2 | F | 7 | NF | 6 | NF | 1 | F | 9 | NF |
3 | F | 6 | NF | 7 | NF | 1 | F | 2 | F |
9 | NF | 4 | F | 7 | NF | 3 | F | 9 | NF |
5 | F | 7 | NF | 1 | F | 8 | NF | 4 | F |
0 | F | 1 | F | 7 | NF | 8 | NF | 0 | F |
3 | F | 5 | F | 0 | F | 8 | NF | 0 | F |
4 | F | 0 | F | 9 | NF | 9 | NF | 7 | NF |
0 | F | 9 | NF | 7 | NF | 9 | NF | 6 | NF |
5 | F | 9 | NF | 7 | NF | 3 | F | 9 | NF |
7 | NF | 4 | F | 5 | F | 0 | F | 9 | NF |
5 | F | 0 | F | 5 | F | 7 | NF | 7 | NF |
6 | NF | 0 | F | 8 | NF | 4 | F | 1 | F |
2 | F | 0 | F | 0 | F | 6 | NF | 9 | NF |
8 | NF | 1 | F | 0 | F | 0 | F | 1 | F |
7 | NF | 9 | NF | 0 | F | 2 | F | 4 | F |
1 | F | 2 | F | 9 | NF | 2 | F | 8 | NF |
3 | F | 7 | NF | 5 | F | 7 | NF | 1 | F |
9 | NF | 2 | F | 3 | F | 4 | F | 6 | NF |
6 | NF | 7 | NF | 2 | F | 0 | F | 0 | F |
4 | F | 7 | NF | 8 | NF | 0 | F | 7 | NF |
0 | F | 5 | F | 6 | NF | 1 | F | 7 | NF |
9 | NF | 4 | F | 3 | F | 1 | F | 9 | NF |
Sample 6 | Sample 7 | Sample 8 | Sample 9 | Sample 10 | |||||
Digit | Response | Digit | Response | Digit | Response | Digit | Response | Digit | Response |
6 | NF | 8 | NF | 6 | NF | 3 | F | 3 | F |
8 | NF | 2 | F | 0 | F | 6 | NF | 8 | NF |
4 | F | 7 | NF | 9 | NF | 0 | F | 4 | F |
1 | F | 3 | F | 4 | F | 0 | F | 4 | F |
7 | NF | 9 | NF | 0 | F | 9 | NF | 8 | NF |
3 | F | 5 | F | 7 | NF | 1 | F | 4 | F |
5 | F | 7 | NF | 2 | F | 9 | NF | 8 | NF |
0 | F | 8 | NF | 0 | F | 3 | F | 7 | NF |
1 | F | 9 | NF | 2 | F | 6 | NF | 8 | NF |
3 | F | 0 | F | 4 | F | 5 | F | 9 | NF |
1 | F | 2 | F | 1 | F | 1 | F | 1 | F |
5 | F | 0 | F | 7 | NF | 5 | F | 8 | NF |
5 | F | 8 | NF | 8 | NF | 4 | F | 3 | F |
2 | F | 0 | F | 6 | NF | 1 | F | 3 | F |
9 | NF | 7 | NF | 8 | NF | 2 | F | 8 | NF |
7 | NF | 4 | F | 2 | F | 3 | F | 2 | F |
2 | F | 7 | NF | 4 | F | 9 | NF | 4 | F |
7 | NF | 5 | F | 9 | NF | 6 | NF | 6 | NF |
6 | NF | 1 | F | 4 | F | 3 | F | 9 | NF |
5 | F | 1 | F | 3 | F | 8 | NF | 7 | NF |
8 | NF | 8 | NF | 6 | NF | 8 | NF | 3 | F |
5 | F | 1 | F | 1 | F | 5 | F | 9 | NF |
0 | F | 6 | NF | 7 | NF | 4 | F | 3 | F |
8 | NF | 7 | NF | 9 | NF | 5 | F | 6 | NF |
9 | NF | 6 | NF | 0 | F | 3 | F | 4 | F |
The sample proportion
where x is the number of successes and n is the
For sample 1, the number of adults who actively tried to avoid drinking regular soda or pop in the year 2015 is 16. So, the sample proportion is calculated as shown below:
For sample 2, the number of adults who actively tried to avoid drinking regular soda or pop in the year 2015 is 14. So, the sample proportion is calculated as shown below:
Similarly, the sample proportion who actively tried to avoid drinking regular soda or pop in the year 2015 for the remaining samples are shown below in the tabular manner:
Samples | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Number of favorable | 16 | 14 | 14 | 16 | 11 | 15 | 12 | 14 | 17 | 12 |
Sample proportion |
0.64 | 0.56 | 0.56 | 0.64 | 0.44 | 0.60 | 0.48 | 0.56 | 0.68 | 0.48 |
(c)
To find: The 68% confidence interval for the population proportion p from each of the 10 samples and then determine the number of confidence intervals in which the true parameter value 0.6 lies.
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 26E
Solution: The 68% confidence intervals for each of the 10 samples are shown below:
Samples | Sample proportion |
68% confidence interval | |
Lower limit | Upper limit | ||
1 | 0.64 | 0.544 | 0.736 |
2 | 0.56 | 0.461 | 0.659 |
3 | 0.56 | 0.461 | 0.659 |
4 | 0.64 | 0.544 | 0.736 |
5 | 0.44 | 0.341 | 0.539 |
6 | 0.60 | 0.502 | 0.698 |
7 | 0.48 | 0.381 | 0.579 |
8 | 0.56 | 0.461 | 0.659 |
9 | 0.68 | 0.587 | 0.773 |
10 | 0.48 | 0.381 | 0.579 |
From the obtained confidence intervals of population proportion p from each of the 10 samples, it can be said that true parameter value 0.6 will lie in the intervals of sample 1, sample 2, sample 3, sample 4, sample 6, sample 7, sample 8, and sample 9.
Explanation of Solution
Calculation:
Compute the confidence interval for true proportion p using formula as shown below:
where
According to
For the calculation of confidence interval of the population proportion p from each sample, use the sample proportion obtained in part (b).
The 68% confidence interval of p is calculated from first sample as shown below:
The 68% confidence interval of p is calculated from first sample as shown below:
Similarly, the 68% confidence interval for each of the remaining samples is obtained, which is shown below in the tabular manner:
Samples | Sample proportion |
68% confidence interval | |
Lower limit | Upper limit | ||
1 | 0.64 | 0.544 | 0.736 |
2 | 0.56 | 0.461 | 0.659 |
3 | 0.56 | 0.461 | 0.659 |
4 | 0.64 | 0.544 | 0.736 |
5 | 0.44 | 0.341 | 0.539 |
6 | 0.60 | 0.502 | 0.698 |
7 | 0.48 | 0.381 | 0.579 |
8 | 0.56 | 0.461 | 0.659 |
9 | 0.68 | 0.587 | 0.773 |
10 | 0.48 | 0.381 | 0.579 |
Interpretation: Therefore, it can be concluded all the intervals capture the true parameter value 0.6 except the sample 5 and sample 10.
Want to see more full solutions like this?
Chapter 21 Solutions
Statistics: Concepts and Controversies
- Examine the Variables: Carefully review and note the names of all variables in the dataset. Examples of these variables include: Mileage (mpg) Number of Cylinders (cyl) Displacement (disp) Horsepower (hp) Research: Google to understand these variables. Statistical Analysis: Select mpg variable, and perform the following statistical tests. Once you are done with these tests using mpg variable, repeat the same with hp Mean Median First Quartile (Q1) Second Quartile (Q2) Third Quartile (Q3) Fourth Quartile (Q4) 10th Percentile 70th Percentile Skewness Kurtosis Document Your Results: In RStudio: Before running each statistical test, provide a heading in the format shown at the bottom. “# Mean of mileage – Your name’s command” In Microsoft Word: Once you've completed all tests, take a screenshot of your results in RStudio and paste it into a Microsoft Word document. Make sure that snapshots are very clear. You will need multiple snapshots. Also transfer these results to the…arrow_forward2 (VaR and ES) Suppose X1 are independent. Prove that ~ Unif[-0.5, 0.5] and X2 VaRa (X1X2) < VaRa(X1) + VaRa (X2). ~ Unif[-0.5, 0.5]arrow_forward8 (Correlation and Diversification) Assume we have two stocks, A and B, show that a particular combination of the two stocks produce a risk-free portfolio when the correlation between the return of A and B is -1.arrow_forward
- 9 (Portfolio allocation) Suppose R₁ and R2 are returns of 2 assets and with expected return and variance respectively r₁ and 72 and variance-covariance σ2, 0%½ and σ12. Find −∞ ≤ w ≤ ∞ such that the portfolio wR₁ + (1 - w) R₂ has the smallest risk.arrow_forward7 (Multivariate random variable) Suppose X, €1, €2, €3 are IID N(0, 1) and Y2 Y₁ = 0.2 0.8X + €1, Y₂ = 0.3 +0.7X+ €2, Y3 = 0.2 + 0.9X + €3. = (In models like this, X is called the common factors of Y₁, Y₂, Y3.) Y = (Y1, Y2, Y3). (a) Find E(Y) and cov(Y). (b) What can you observe from cov(Y). Writearrow_forward1 (VaR and ES) Suppose X ~ f(x) with 1+x, if 0> x > −1 f(x) = 1−x if 1 x > 0 Find VaRo.05 (X) and ES0.05 (X).arrow_forward
- Joy is making Christmas gifts. She has 6 1/12 feet of yarn and will need 4 1/4 to complete our project. How much yarn will she have left over compute this solution in two different ways arrow_forwardSolve for X. Explain each step. 2^2x • 2^-4=8arrow_forwardOne hundred people were surveyed, and one question pertained to their educational background. The results of this question and their genders are given in the following table. Female (F) Male (F′) Total College degree (D) 30 20 50 No college degree (D′) 30 20 50 Total 60 40 100 If a person is selected at random from those surveyed, find the probability of each of the following events.1. The person is female or has a college degree. Answer: equation editor Equation Editor 2. The person is male or does not have a college degree. Answer: equation editor Equation Editor 3. The person is female or does not have a college degree.arrow_forward
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman
![Text book image](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305251809/9781305251809_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305504912/9781305504912_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134683416/9780134683416_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781319042578/9781319042578_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781319013387/9781319013387_smallCoverImage.gif)