CONCEPT. INTEG. SCI. -ACCESS W/ ETEXT
3rd Edition
ISBN: 9780135626566
Author: Hewitt
Publisher: INTER PEAR
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 21, Problem 24TIS
To determine
To find:
The description of the photic zone of ocean habitats.
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
need help part d
A cab driver heads south with a steady speed of v₁ = 20.0 m/s for t₁ = 3.00 min, then makes a right turn and travels at v₂ = 25.0 m/s for t₂ = 2.80 min, and then drives northwest at v3 = 30.0 m/s for t3 = 1.00 min. For this 6.80-min trip, calculate the following.
Assume +x is in the eastward direction.
(a) total vector displacement (Enter the magnitude in m and the direction in degrees south of west.)
magnitude
direction
For each straight-line movement, model the car as a particle under constant velocity, and draw a diagram of the displacements, labeling the distances and angles. Let the starting point be the origin of your coordinate system. Use the relationship
speed = distance/time to find the distances traveled during each segment. Write the displacement vector, and calculate its magnitude and direction. Don't forget to convert min to s! m
Model the car as a particle under constant velocity, and draw a diagram of the displacements, labeling the distances and angles. Let the…
î
A proton is projected in the positive x direction into a region of uniform electric field E = (-5.50 x 105) i N/C at t = 0. The
proton travels 7.20 cm as it comes to rest.
(a) Determine the acceleration of the proton.
magnitude 5.27e13
direction -X
m/s²
(b) Determine the initial speed of the proton.
8.71e-6
magnitude The electric field is constant, so the force is constant, which means the acceleration will be constant.
m/s
direction +X
(c) Determine the time interval over which the proton comes to rest.
1.65e-7
Review you equations for constant accelerated motion. s
Chapter 21 Solutions
CONCEPT. INTEG. SCI. -ACCESS W/ ETEXT
Ch. 21 - What is ecology?Ch. 21 - Prob. 2RCQCh. 21 - What is the difference between a community and an...Ch. 21 - Describe exponential growth. Under what conditions...Ch. 21 - Why do populations that live in unstable...Ch. 21 - Describe logistic growth. Under what conditions do...Ch. 21 - What are the differences between Type I, Type II,...Ch. 21 - Explain how global human population size is...Ch. 21 - What is the age structure of a population? What...Ch. 21 - Prob. 10RCQ
Ch. 21 - What is the name for a diagram of who eats whom in...Ch. 21 - Explain the difference between a producer and a...Ch. 21 - What is a decomposer? What organisms function as...Ch. 21 - Can two species have the exact same niche in a...Ch. 21 - Define parasitism, and provide some examples.Ch. 21 - How does primary succession differ from secondary...Ch. 21 - Why are the later colonizers of a habitat...Ch. 21 - What usually happens to the total biomass in an...Ch. 21 - How can regular disturbances contribute to the...Ch. 21 - Prob. 20TISCh. 21 - Prob. 21TISCh. 21 - Which biome includes more living things than all...Ch. 21 - Prob. 23TISCh. 21 - Prob. 24TISCh. 21 - Prob. 25TISCh. 21 - Prob. 26TISCh. 21 - Prob. 27TISCh. 21 - What role do nitrogen-fixing bacteria and...Ch. 21 - Prob. 29TISCh. 21 - Prob. 30TISCh. 21 - Prob. 31TISCh. 21 - Prob. 32TISCh. 21 - Prob. 33TISCh. 21 - Prob. 38TCCh. 21 - Prob. 39TCCh. 21 - Suppose that you have a logistically growing...Ch. 21 - In a population of songbirds, 100 young are born...Ch. 21 - In a population of insects, 1 million young are...Ch. 21 - Prob. 43TSCh. 21 - Does a community contain multiple populations?...Ch. 21 - Prob. 45TECh. 21 - Prob. 46TECh. 21 - A scientist examines how the presence of a...Ch. 21 - How are exponential growth and logistic growth...Ch. 21 - What factors could cause population growth to slow...Ch. 21 - Prob. 50TECh. 21 - Suppose that the carrying capacity of a specific...Ch. 21 - Prob. 52TECh. 21 - Why is a baby elephant considered an expensive...Ch. 21 - Would you expect a tiger to have a Type I, Type...Ch. 21 - Name an organism that you might see in your...Ch. 21 - The graph below shows survivorship curves for...Ch. 21 - Prob. 57TECh. 21 - Prob. 58TECh. 21 - Prob. 59TECh. 21 - Prob. 61TECh. 21 - Prob. 62TECh. 21 - Prob. 63TECh. 21 - Prob. 64TECh. 21 - Prob. 65TECh. 21 - Prob. 66TECh. 21 - Prob. 67TECh. 21 - Prob. 68TECh. 21 - Prob. 69TECh. 21 - Prob. 70TECh. 21 - Prob. 71TECh. 21 - Prob. 72TECh. 21 - Prob. 73TECh. 21 - Prob. 74TECh. 21 - Prob. 75TECh. 21 - Prob. 76TECh. 21 - Prob. 77TECh. 21 - Prob. 78TECh. 21 - Prob. 79TECh. 21 - Prob. 80TECh. 21 - Prob. 81TECh. 21 - Prob. 82TECh. 21 - Name at least two different processes that return...Ch. 21 - Prob. 84TECh. 21 - Prob. 85TECh. 21 - Prob. 86TECh. 21 - Prob. 87TECh. 21 - If you eat a pound of pasta, will you gain a pound...Ch. 21 - Prob. 89TECh. 21 - How does the Second Law of Thermodynamics help...Ch. 21 - How does the energy lost during cellular...Ch. 21 - Prob. 92TECh. 21 - Prob. 93TECh. 21 - Prob. 94TECh. 21 - Prob. 95TECh. 21 - Two populations of rabbits are growing...Ch. 21 - Two populations of monkeys are growing...Ch. 21 - Prob. 98TDICh. 21 - What type of survivorship curve characterizes...Ch. 21 - Prob. 100TDICh. 21 - Some acacia trees have evolved a special...Ch. 21 - Prob. 102TDICh. 21 - Prob. 103TDICh. 21 - Prob. 104TDICh. 21 - Would you expect to find more Type I or Type III...Ch. 21 - Prob. 1RATCh. 21 - A Type III population is associated with a...Ch. 21 - Prob. 3RATCh. 21 - Prob. 4RATCh. 21 - Prob. 5RATCh. 21 - Prob. 6RATCh. 21 - Prob. 7RATCh. 21 - Prob. 8RATCh. 21 - Prob. 9RATCh. 21 - Prob. 10RAT
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Three charged particles are at the corners of an equilateral triangle as shown in the figure below. (Let q = 2.00 μC, and L = 0.750 m.) y 7.00 με 60.0° L 9 -4.00 μC x (a) Calculate the electric field at the position of charge q due to the 7.00-μC and -4.00-μC charges. 112 Once you calculate the magnitude of the field contribution from each charge you need to add these as vectors. KN/CI + 64 × Think carefully about the direction of the field due to the 7.00-μC charge. KN/Cĵ (b) Use your answer to part (a) to determine the force on charge q. 240.0 If you know the electric field at a particular point, how do you find the force that acts on a charge at that point? mN Î + 194.0 × If you know the electric field at a particular point, how do you find the force that acts on a charge at that point? mNarrow_forwardIn the Donkey Kong Country video games you often get around by shooting yourself out of barrel cannons. Donkey Kong wants to launch out of one barrel and land in a different one that is a distance in x of 9.28 m away. To do so he launches himself at a velocity of 22.6 m/s at an angle of 30.0°. At what height does the 2nd barrel need to be for Donkey Kong to land in it? (measure from the height of barrel 1, aka y0=0)arrow_forwardFor which value of θ is the range of a projectile fired from ground level a maximum? 90° above the horizontal 45° above the horizontal 55° above the horizontal 30° above the horizontal 60° above the horizontalarrow_forward
- A map from The Legend of Zelda: The Breath of the Wild shows that Zora's Domain is 7.55 km in a direction 25.0° north of east from Gerudo Town. The same map shows that the Korok Forest is 3.13 km in a direction 55.0° west of north from Zora's Domain. The figure below shows the location of these three places. Modeling Hyrule as flat, use this information to find the displacement from Gerudo Town to Korok Forest. What is the magnitude of the displacement? Find the angle of the displacement. Measure the angle in degrees north of east of Gerudo Town.arrow_forwardRace car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? c) If the driver’s average rate of acceleration is -9.5 m/s2 as he slows down, how long does it take him to come to a stop (use information about his speed of 28.9 m/s but do NOT use his reaction and movement time in this computation)? Please answer parts a-c. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.arrow_forwardBelow you will find 100 m split times for the American and France men’s 4x100 meter free style relay race during the 2008 Beijing Summer Olympics). Answer questions a-d. a) What was the total race time for each team, in seconds? b) Which team won the race? What was the difference in the teams’ times? c) What was the average speed for each team for the whole race? (provide answer to 3 decimal places). d) Calculate the average speed for each swimmer and report the results in a table like the one above. Remember to show the calculation steps. (provide answer to 3 decimal places). PLEASE SHOW ALL WORK AND STEPS.arrow_forward
- Need complete solution Pleasearrow_forwardBelow you will find 100 m split times for the American and France men’s 4x100 meter free style relay race during the 2008 Beijing Summer Olympics). Fill out the chart below. Calculate average speed per split (m/s). Show all work.arrow_forwardThe magnitude of vector →A i s 261. m and points in the direction 349.° counterclockwise from the positive x-axis. Calculate the x-component of this vector . Calculate the y-component of this vector.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168284/9781938168284_smallCoverImage.gif)
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399944/9781337399944_smallCoverImage.gif)
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399920/9781337399920_smallCoverImage.gif)
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305804562/9781305804562_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337672252/9781337672252_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079137/9781305079137_smallCoverImage.gif)
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
A Level Physics – Ideal Gas Equation; Author: Atomi;https://www.youtube.com/watch?v=k0EFrmah7h0;License: Standard YouTube License, CC-BY