(a)
Interpretation:
The balanced equation for the given reaction has to be written.
Concept introduction:
- There is a law for conversion of mass in a
chemical reaction i.e., the mass of total amount of the product should be equal to the total mass of the reactants. - The concept of writing a balanced chemical equation is depends on conversion of reactants into products.
- First write the reaction from the given information.
- Then count the number of atoms of each element in reactants as well as products.
- Finally obtained values could place it as coefficients of reactants as well as products.
(a)
Answer to Problem 21.68QP
The balanced equation for the given reaction was
Explanation of Solution
To write the balanced equation for heating of
By heating of heating of aluminum carbonate it will produce aluminum oxide and carbon dioxides as follows.
Here, the reaction is unbalanced. So we need to balance it. To balance the reaction, calculate the number of atoms present in left side and right side. Finally, obtained values could place it as coefficients of reactants as well as products. The balanced equation is
(b)
Interpretation:
The balanced equation for the given reaction has to be written.
Concept introduction:
- There is a law for conversion of mass in a chemical reaction i.e., the mass of total amount of the product should be equal to the total mass of the reactants.
- The concept of writing a balanced chemical equation is depends on conversion of reactants into products.
- First write the reaction from the given information.
- Then count the number of atoms of each element in reactants as well as products.
- Finally obtained values could place it as coefficients of reactants as well as products.
(b)
Answer to Problem 21.68QP
The balanced equation for the given reaction was
Explanation of Solution
To write the balanced equation for the reaction between
Aluminum chloride reacts with potassium to form metallic aluminum and potassium chloride.
Here, the reaction is unbalanced. So we need to balance it. To balance the reaction, calculate the number of atoms present in left side and right side. Finally, obtained values could place it as coefficients of reactants as well as products. The balanced equation is
(c)
Interpretation:
The balanced equation for the given reaction has to be written.
Concept introduction:
- There is a law for conversion of mass in a chemical reaction i.e., the mass of total amount of the product should be equal to the total mass of the reactants.
- The concept of writing a balanced chemical equation is depends on conversion of reactants into products.
- First write the reaction from the given information.
- Then count the number of atoms of each element in reactants as well as products.
- Finally obtained values could place it as coefficients of reactants as well as products.
(c)
Answer to Problem 21.68QP
The balanced equation for the given reaction was
Explanation of Solution
To write the balanced equation for the reaction between
Sodium carbonate reacts with calcium carbonate to produce calcium carbonate and sodium hydroxide.
Here, the reaction is unbalanced. So we need to balance it. To balance the reaction, calculate the number of atoms present in left side and right side. Finally, obtained values could place it as coefficients of reactants as well as products. The balanced equation is
Want to see more full solutions like this?
Chapter 21 Solutions
Chemistry: Atoms First
- Q9: Explain why compound I is protonated on O while compound II is protonated on N. NH2 NH2 I IIarrow_forwardAN IR spectrum, a 13 CMR spectrum, and a 1 HMR spectrum were obtained for an unknown structure with a molecular formula of C9H10. Draw the structure of this compound.arrow_forwardAN IR spectrum, a 13 CMR spectrum, and a 1 HMR spectrum were obtained for an unknown structure with a molecular formula of C9H10. Draw the structure of this compound.arrow_forward
- (a) What is the hybridization of the carbon in the methyl cation (CH3*) and in the methyl anion (CH3¯)? (b) What is the approximate H-C-H bond angle in the methyl cation and in the methyl anion?arrow_forwardQ8: Draw the resonance structures for the following molecule. Show the curved arrows (how you derive each resonance structure). Circle the major resonance contributor.arrow_forwardQ4: Draw the Lewis structures for the cyanate ion (OCN) and the fulminate ion (CNO). Draw all possible resonance structures for each. Determine which form for each is the major resonance contributor.arrow_forward
- In the following molecule, indicate the hybridization and shape of the indicated atoms. CH3 N CH3 HÖ: H3C CI: ::arrow_forwardQ3: Draw the Lewis structures for nitromethane (CH3NO2) and methyl nitrite (CH3ONO). Draw at least two resonance forms for each. Determine which form for each is the major resonance contributor.arrow_forwardQ1: Draw a valid Lewis structures for the following molecules. Include appropriate charges and lone pair electrons. If there is more than one Lewis structure available, draw the best structure. NH3 Sulfate Boron tetrahydride. C3H8 (linear isomer) OCN NO3 CH3CN SO2Cl2 CH3OH2*arrow_forward
- Q2: Draw all applicable resonance forms for the acetate ion CH3COO. Clearly show all lone pairs, charges, and arrow formalism.arrow_forwardPlease correct answer and don't used hand raitingarrow_forward9. The following reaction, which proceeds via the SN1/E1 mechanisms, gives three alkene products (A, B, C) as well as an ether (D). (a) Show how each product arises mechanistically. (b) For the alkenes, determine the major product and justify your answer. (c) What clues in the reaction as shown suggest that this reaction does not go by the SN2/E2 mechanism route? (CH3)2CH-CH-CH3 CH3OH 1 Bl CH3OH ⑧· (CH3)2 CH-CH=CH2 heat H ⑥③ (CH3)2 C = C = CH3 © СнЗ-С-Снаснз сна (CH 3 ) 2 C H G H CH 3 оснзarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning