
(a)
Interpretation:
A complete and balanced equation for the following reaction has to be written. ‘NR’ has to be written in case of no reaction.
Concept introduction:
- There is a Law for conversion of mass in a
chemical reaction i.e., the mass of total amount of the product should be equal to the total mass of the reactants. - The concept of writing a balanced chemical reaction is depends on conversion of reactants into products.
- First write the reaction from the given information.
- Then count the number of atoms of each element in reactants as well as products.
- Finally obtained values could place it as coefficients of reactants as well as products.
- Loss of electron and loss of Hydrogen in a compound is oxidation - the compound is oxidized. Gain of electron, gain of Oxygen in a compound is reduction - the compound is reduced.
Oxidation reduction and reduction reaction occur simultaneously in same reaction.
(a)

Answer to Problem 21.61QP
The balanced equation for the given reaction is,
Explanation of Solution
Halide ions and Halogens act as oxidizing and reducing agents. Reaction between halide ions and halogens depend upon their strength as oxidizing and reducing agent. A reducing agent loses electron whereas an oxidizing agent gains electrons.
A halide ion or halogen which is stronger oxidizing agent reacts only with a halide ion or halogen which is stronger reducing agent. Iodine, in presence of Chloride ion is not a strong oxidizing agent that it doesn’t react with chloride ion.
(b)
Interpretation:
A complete and balanced equation for the following reaction has to be written. ‘NR’ has to be written in case of no reaction.
Concept introduction:
- There is a Law for conversion of mass in a chemical reaction i.e., the mass of total amount of the product should be equal to the total mass of the reactants.
- The concept of writing a balanced chemical reaction is depends on conversion of reactants into products.
- First write the reaction from the given information.
- Then count the number of atoms of each element in reactants as well as products.
- Finally obtained values could place it as coefficients of reactants as well as products.
- Loss of electron and loss of Hydrogen in a compound is oxidation - the compound is oxidized. Gain of electron, gain of Oxygen in a compound is reduction - the compound is reduced.
- Oxidation reduction and reduction reaction occur simultaneously in same reaction.
(b)

Answer to Problem 21.61QP
The balanced equation for the given reaction is,
Explanation of Solution
Halide ions and Halogens act as oxidizing and reducing agents. Reaction between halide ions and halogens depend upon their strength as oxidizing and reducing agent. A reducing agent loses electron whereas an oxidizing agent gains electrons.
A halide ion or halogen which is stronger oxidizing agent reacts only with a halide ion or halogen which is stronger reducing agent. Chlorine, in presence of Bromide ion is a strong reducing agent that it reduces bromide ion to bromine.
The balanced equation for the given reaction is,
(c)
Interpretation:
A complete and balanced equation for the following reaction has to be written. ‘NR’ has to be written in case of no reaction.
Concept introduction:
- There is a Law for conversion of mass in a chemical reaction i.e., the mass of total amount of the product should be equal to the total mass of the reactants.
- The concept of writing a balanced chemical reaction is depends on conversion of reactants into products.
- First write the reaction from the given information.
- Then count the number of atoms of each element in reactants as well as products.
- Finally obtained values could place it as coefficients of reactants as well as products.
- Loss of electron and loss of Hydrogen in a compound is oxidation - the compound is oxidized. Gain of electron, gain of Oxygen in a compound is reduction - the compound is reduced.
- Oxidation reduction and reduction reaction occur simultaneously in same reaction.
(c)

Answer to Problem 21.61QP
The balanced equation for the given reaction is,
Explanation of Solution
Halide ions and Halogens act as oxidizing and reducing agents. Reaction between halide ions and halogens depend upon their strength as oxidizing and reducing agent. A reducing agent loses electron whereas an oxidizing agent gains electrons.
A halide ion or halogen which is stronger oxidizing agent reacts only with a halide ion or halogen which is stronger reducing agent. Bromine, in presence of Iodide ion is a strong reducing agent that it reduces iodide ion to iodine.
The balanced equation for the given reaction is,
(d)
Interpretation:
A complete and balanced equation for the following reaction has to be written. ‘NR’ has to be written in case of no reaction.
Concept introduction:
- There is a Law for conversion of mass in a chemical reaction i.e., the mass of total amount of the product should be equal to the total mass of the reactants.
- The concept of writing a balanced chemical reaction is depends on conversion of reactants into products.
- First write the reaction from the given information.
- Then count the number of atoms of each element in reactants as well as products.
- Finally obtained values could place it as coefficients of reactants as well as products.
- Loss of electron and loss of Hydrogen in a compound is oxidation - the compound is oxidized. Gain of electron, gain of Oxygen in a compound is reduction - the compound is reduced.
- Oxidation reduction and reduction reaction occur simultaneously in same reaction.
(d)

Answer to Problem 21.61QP
The balanced equation for the given reaction is,
Explanation of Solution
Halide ions and Halogens act as oxidizing and reducing agents. Reaction between halide ions and halogens depend upon their strength as oxidizing and reducing agent. A reducing agent loses electron whereas an oxidizing agent gains electrons.
A halide ion or halogen which is stronger oxidizing agent reacts only with a halide ion or halogen which is stronger reducing agent. Bromine, in presence of Chloride ion is not a strong reducing agent that it reduce chloride ion to chlorine.
Want to see more full solutions like this?
Chapter 21 Solutions
General Chemistry
- Question: Find both the b (gradient) and a (y-intercept) value from the list of data below: (x1 -x̄) 370.5 (y1 - ȳ) 5.240 (x2 - x̄) 142.5 (y2 - ȳ) 2.004 (x3 - x̄) 28.5 (y3 - ȳ) 0.390 (x4 - x̄) -85.5 (y4 - ȳ) -1.231 (x5 - x̄) -199.5 (y5 - ȳ) -2.829 (x6 - x̄) -256.5 (y6 - ȳ) -3.575arrow_forwardCalculating standard reaction free energy from standard reduction... Using standard reduction potentials from the ALEKS Data tab, calculate the standard reaction free energy AG° for the following redox reaction. Be sure your answer has the correct number of significant digits. 3Cu+ (aq) + Cro²¯ (aq) +4H₂O (1) → 3Cu²+ (aq) +Cr(OH)3 (s)+5OH˜¯ (aq) 0 kJ ☐ x10 00. 18 Ararrow_forwardCalculating the pH of a weak base titrated with a strong acid An analytical chemist is titrating 241.7 mL of a 0.4900M solution of methylamine (CH3NH2) with a 0.7800M solution of HNO3. The pK of methylamine is 3.36. Calculate the pH of the base solution after the chemist has added 17.7 mL of the HNO3 solution to it. Note for advanced students: you may assume the final volume equals the initial volume of the solution plus the volume of HNO3 solution added. Round your answer to 2 decimal places. pH = ☑ ? 18 Ararrow_forward
- The following is two groups (Regular tomato sauce & Salt Reduced Tomato Sauce) of data recorded by a team analysising salt content in tomato sauce using the MOHR titration method: Regular Tomato Sauce Salt Reduced Tomato Sauce 223.4 148.7 353.7 278.2 334.6 268.7 305.6 234.4 340.0 262.7 304.3 283.2 244.7 143.6 QUESTION: For both groups of data calculate the answers attached in the image.arrow_forwardThe following is a two groups (Regular tomato sauce & Salt Reduced Tomato Sauce) of data recorded by a team analysising salt content in tomato sauce using the MOHR titration method: Regular Tomato Sauce Salt Reduced Tomato Sauce 340.0mmol/L 262.7mmol/L QUESTION: For both groups (Regular & Salt Reduced tomato sauce) of data provide answers to the following calculations below: 1. Standard Deviation (Sx) 2. T Values (t0.05,4) 3. 95% Confidence Interval (mmol/L) 4. [Na+] (mg/100 mL) 5. 95% Confidence Interval (mg/100 mL)arrow_forwardIf we have leucine (2-amino-4-methylpentanoic acid), alanine (2-aminopropanoic acid) and phenylalanine (2-amino-3-phenylpropanoic acid), indicate the tripeptides that can be formed (use the abbreviated symbols Leu., Ala and Phe).arrow_forward
- Briefly state why trifluoroacetic acid is more acidic than acetic acid.arrow_forwardExplain why acid chlorides are more reactive than amides in reactions with nucleophiles.arrow_forwardCalculating the pH of a weak base titrated with a strong acid An analytical chemist is titrating 101.7 mL of a 0.3500M solution of piperidine (C5H10NH) with a 0.05700M solution of HClO4. The pK of piperidine is 2.89. Calculate the pH of the base solution after the chemist has added 682.9 mL of the HClO solution to it. 4 Note for advanced students: you may assume the final volume equals the initial volume of the solution plus the volume of HClO solution added. 4 Round your answer to 2 decimal places. pH = .11 00. 18 Ararrow_forward
- The following is a two groups (Regular tomato sauce & Salt Reduced Tomato Sauce) of data recorded by a team analysising salt content in tomato sauce using the MOHR titration method: Regular Tomato Sauce Salt Reduced Tomato Sauce 340.0 262.7 QUESTION: For both groups of data provide answers to the calculations attached in the imagearrow_forward7. Concentration and uncertainty in the estimate of concentration (class data) Class mean for sample (Regular) |[Cl-] (mmol/L) class mean Sn za/2 95% Confidence Interval (mmol/L) [Na+] (mg/100 mL) 95% Confidence Interval (mg/100 mL)arrow_forwardThe following is a two groups (Regular tomato sauce & Salt Reduced Tomato Sauce) of data recorded by a team analysising salt content in tomato sauce using the MOHR titration method: Regular Tomato Sauce Salt Reduced Tomato Sauce 223.4 148.7 353.7 278.2 334.6 268.7 305.6 234.4 340.0 262.7 304.3 283.2 244.7 143.6 QUESTION: For both groups of data calculate the answers attached in the image.arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning





