
(a)
Interpretation:
For the given nuclear reaction, X should be identified and the equation should be balanced.
Concept Introduction:
- Nuclear reaction can be written in the shorthand notation with the parentheses. Bombarding particle, that is projectile can be represented as first symbol in the parentheses and the emitted particle that is ejectile which can be represented as the second particle in the parentheses.
Parent nucleus and daughter nucleus can be represented in the front part of the parentheses and back part of the parentheses respectively.
- On accordance with law of conservation of mass, for any
chemical reaction , total masses of reactants and products must be equal.
To find: The value of X in the given all
(a)

Answer to Problem 21.34QP
Explanation of Solution
Nuclear reaction can be written in the shorthand notation with the parentheses. Bombarding particle, that is projectile can be represented as first symbol in the parentheses and the emitted particle that is ejectile which can be represented as the second particle in the parentheses. Parent nucleus and daughter nucleus can be represented in the front part of the parentheses and back part of the parentheses respectively. So for any nuclear reaction, short hand notation will be in this form that is,
For the given reaction a, Short hand notation is
The given chemical equation can be written as,
On accordance with law of conservation of mass, for any chemical reaction, total masses of reactants and products must be equal. So the X will be
So the balanced equation can be written as,
(b)
Interpretation: For the given nuclear reaction, X should be identified and the equation should be balanced.
Concept Introduction:
- Nuclear reaction can be written in the shorthand notation with the parentheses. Bombarding particle, that is projectile can be represented as first symbol in the parentheses and the emitted particle that is ejectile which can be represented as the second particle in the parentheses.
Parent nucleus and daughter nucleus can be represented in the front part of the parentheses and back part of the parentheses respectively.
- On accordance with law of conservation of mass, for any chemical reaction, total masses of reactants and products must be equal.
To find: The value of X in the given all nuclear equation
(b)

Answer to Problem 21.34QP
Explanation of Solution
For the given reaction b, Shorthand notation is
The given chemical equation can be written as,
On accordance with law of conservation of mass, for any chemical reaction, total masses of reactants and products must be equal. So the X will be
So the balanced equation can be written as,
.
(c)
Interpretation: For the given nuclear reaction, X should be identified and the equation should be balanced.
Concept Introduction:
- Nuclear reaction can be written in the shorthand notation with the parentheses. Bombarding particle, that is projectile can be represented as first symbol in the parentheses and the emitted particle that is ejectile which can be represented as the second particle in the parentheses.
Parent nucleus and daughter nucleus can be represented in the front part of the parentheses and back part of the parentheses respectively.
- On accordance with law of conservation of mass, for any chemical reaction, total masses of reactants and products must be equal.
To find: The value of X in the given all nuclear equation
(c)

Answer to Problem 21.34QP
Explanation of Solution
For the given reaction c, Shorthand notation is
The given chemical equation can be written as,
On accordance with law of conservation of mass, for any chemical reaction, total masses of reactants and products must be equal. So X will be
So the balanced equation can be written as,
.
Want to see more full solutions like this?
Chapter 21 Solutions
Connect 1 Semester Access Card for General Chemistry: The Essential Concepts
- 4. Read paragraph 4.15 from your textbook, use your calculated lattice energy values for CuO, CuCO3 and Cu(OH)2 an explain thermal decomposition reaction of malachite: Cu2CO3(OH)2 →2CuO + H2O + CO2 (3 points)arrow_forwardPlease sirrr soollveee these parts pleaseeee and thank youuuuuarrow_forwardIII O Organic Chemistry Using wedges and dashes in skeletal structures Draw a skeletal ("line") structure for each of the molecules below. Be sure your structures show the important difference between the molecules. key O O O O O CHON Cl jiii iiiiiiii You can drag the slider to rotate the molecules. Explanation Check Click and drag to start drawing a structure. Q Search X G ©2025 McGraw Hill LLC. All Rights Reserved. Terms of Use F 3 W C 3/5arrow_forward
- 3. Use Kapustinskii's equation and data from Table 4.10 in your textbook to calculate lattice energies of Cu(OH)2 and CuCO3 (4 points)arrow_forward2. Copper (II) oxide crystalizes in monoclinic unit cell (included below; blue spheres 2+ represent Cu²+, red - O²-). Use Kapustinski's equation (4.5) to calculate lattice energy for CuO. You will need some data from Resource section of your textbook (p.901). (4 points) CuOarrow_forwardWhat is the IUPAC name of the following compound? OH (2S, 4R)-4-chloropentan-2-ol O (2R, 4R)-4-chloropentan-2-ol O (2R, 4S)-4-chloropentan-2-ol O(2S, 4S)-4-chloropentan-2-olarrow_forward
- Use the reaction coordinate diagram to answer the below questions. Type your answers into the answer box for each question. (Watch your spelling) Energy A B C D Reaction coordinate E A) Is the reaction step going from D to F endothermic or exothermic? A F G B) Does point D represent a reactant, product, intermediate or transition state? A/ C) Which step (step 1 or step 2) is the rate determining step? Aarrow_forward1. Using radii from Resource section 1 (p.901) and Born-Lande equation, calculate the lattice energy for PbS, which crystallizes in the NaCl structure. Then, use the Born-Haber cycle to obtain the value of lattice energy for PbS. You will need the following data following data: AH Pb(g) = 196 kJ/mol; AHƒ PbS = −98 kJ/mol; electron affinities for S(g)→S¯(g) is -201 kJ/mol; S¯(g) (g) is 640kJ/mol. Ionization energies for Pb are listed in Resource section 2, p.903. Remember that enthalpies of formation are calculated beginning with the elements in their standard states (S8 for sulfur). The formation of S2, AHF: S2 (g) = 535 kJ/mol. Compare the two values, and explain the difference. (8 points)arrow_forwardIn the answer box, type the number of maximum stereoisomers possible for the following compound. A H H COH OH = H C Br H.C OH CHarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





