
Interpretation:
The standard enthalpy change for the decomposition of water vapor to atoms in the gas phase, the
Concept Introduction:
Enthalpy of reaction:
The enthalpy of a reaction is calculated by subtracting the heat of formation of reactatns from heat of formation of products.
Bond enthalpy:
The measure of stability of molecule is bond enthalpy. The change in enthalpy is related in breaking a specific bond of 1 mole of gaseous molecule. In solids and liquids bond enthalpies are affected by neighboring molecules. There is possibility to predict the enthalpy of reaction using the average bond enthalpies. Energy is always needed for the breaking of
The enthalpy of reaction in gas phase is given by,

Answer to Problem 21.198QP
The standard enthalpy change for the decomposition of water vapor to atoms in the gas phase is
The
The standard enthalpy change for the decomposition of hydrogen peroxide vapor to atoms in the gas phase is
The
Explanation of Solution
Given data:
Water vapor decomposes to atoms in gas phase.
Hydrogen peroxide vapor decomposes to atoms in gas phase.
To Calculate: The standard enthalpy change for the decomposition of water vapor to atoms in the gas phase
The decomposition reaction of water vapor to atoms is written in chemical equation and the enthalpies of formation are written beneath the equation as follows,
The standard enthalpy change for the reaction is calculated as follows,
The standard enthalpy change for the decomposition reaction of water vapor to atoms is
To Calculate: The bond enthalpy of
The enthalpy for the above reaction in terms of bond energies is:
The bond enthalpy of
To Calculate: The standard enthalpy change for the decomposition of hydrogen peroxide vapor to atoms in the gas phase
The decomposition reaction of hydrogen peroxide vapor to atoms is written in chemical equation and the enthalpies of formation are written beneath the equation as follows,
The standard enthalpy change for the reaction is calculated as follows,
The standard enthalpy change for the decomposition reaction of water vapor to atoms is
To Calculate: The bond enthalpy of
The enthalpy for the above reaction in terms of bond energies is:
The bond enthalpy of
From the table 9.5, the bond energies are:
The standard enthalpy change for the decomposition of water vapor to atoms in the gas phase is calculated as
The
The standard enthalpy change for the decomposition of hydrogen peroxide vapor to atoms in the gas phase is calculated as
The
Want to see more full solutions like this?
Chapter 21 Solutions
Lab Manual Experiments in General Chemistry
- What is the IUPAC name of the following compound? CH₂CH₂ H CI H₂CH₂C H CH₂ Selected Answer: O (35,4R)-4 chloro-3-ethylpentane Correctarrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electrons-pushing arrows for the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. I I I H Select to Add Arrows HCI, CH3CH2OHarrow_forward
- Curved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and the follow the arrows to draw the intermediate and product in this reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the curved arrows to draw the intermediates and product of the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the arrows to draw the intermediate and the product in this reaction or mechanistic step(s).arrow_forward
- Look at the following pairs of structures carefully to identify them as representing a) completely different compounds, b) compounds that are structural isomers of each other, c) compounds that are geometric isomers of each other, d) conformers of the same compound (part of structure rotated around a single bond) or e) the same structure.arrow_forwardGiven 10.0 g of NaOH, what volume of a 0.100 M solution of H2SO4 would be required to exactly react all the NaOH?arrow_forward3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forward
- 3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forwardConcentration Trial1 Concentration of iodide solution (mA) 255.8 Concentration of thiosulfate solution (mM) 47.0 Concentration of hydrogen peroxide solution (mM) 110.1 Temperature of iodide solution ('C) 25.0 Volume of iodide solution (1) used (mL) 10.0 Volume of thiosulfate solution (5:03) used (mL) Volume of DI water used (mL) Volume of hydrogen peroxide solution (H₂O₂) used (mL) 1.0 2.5 7.5 Time (s) 16.9 Dark blue Observations Initial concentration of iodide in reaction (mA) Initial concentration of thiosulfate in reaction (mA) Initial concentration of hydrogen peroxide in reaction (mA) Initial Rate (mA's)arrow_forwardDraw the condensed or line-angle structure for an alkene with the formula C5H10. Note: Avoid selecting cis-/trans- isomers in this exercise. Draw two additional condensed or line-angle structures for alkenes with the formula C5H10. Record the name of the isomers in Data Table 1. Repeat steps for 2 cyclic isomers of C5H10arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Living By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning





