Concept explainers
Figure 21-11 shows (1) four situations in which five charged particles are evenly spaced along an axis. The charge values are indicated except for the central particle, which has the same charge in all four situations. Rank the situations according to the magnitude of the net electrostatic force or the central particle, greatest first.
Figure 21-11 Question 1.
To rank:
The situations according to the magnitude of net electrostatic force exerted on the central particle by four given particles.
Answer to Problem 1Q
Solution:
Rank based on net electrostatic force is F3>F1>F2>F4
Explanation of Solution
1) Concept:
The net force acting on a particle due to more than one particle is the sum of forces exerted by each of the particles.
2) Formulae:
Electrostatic force between two charges q1 and q2,
k- Coulomb’s constant constant=8.99 x 109
d- distance of separation between particles.
3) Given:
a. The five particles are evenly spaced on an axis.
b. The charges on four particles are given except for the central particle.
Situation 1: Charges on right side = -e, -e Charges on left side =-+e, -e
Situation 2: Charges on right side = +e, +e Charges on left side =+e, -e
Situation 3: Charges on right side = -e, -e Charges on left side =+e, +e
Situation 4: Charges on right side = -e, +e Charges on left side =+e, -e
c. The central particle has same charge in all the 4 situations.
4) Calculation:
Let us consider that each of the particles is located at d distance apart.
Let us consider that the central particle has a charge +e.
According to Coulomb’s law, the magnitude of force F acting on the central particle due to the particles at distance d is,
Situation 1:
In the situation 1, the free body diagram of force acting on central particle, due to other particles is drawn as shown below.
|
|
|
|
|
The particles located at distance 2d on either side, exert equal and opposite forces on the central particle. So they nullify each other’s effect on the central particle. Meanwhile, the particles at distance d exert equal forces towards the same direction, and hence the exerted forces add up to 2F.
Hence net force, F1= 2F
Situation 2:
|
|
|
|
|
Force exerted by particles at distance d on either side nullifies each other. Hence, the net force on the central particle due to the particles at 2d distance,
F2 =
=
=
Situation 3:
|
|
|
|
|
Here the particles at distance ‘d’ exert equal force on same direction as in situation 1. Hence the force exerted by these particles on central particle is 2F. The particles that are at 2d distance on either sides again exert same force in same direction as in situation 2. Hence the force exerted by them on central particle is 0.5F.
Net force, F3= F1+F2 = 2F +0.5 F = 2.5 F
Situation 4:
|
|
|
|
|
Here the particles at distance ‘2d’ nullifies each other’s effect and also that are at distance ‘d’ again cancel the force exerted by each other. Therefore, the net force acting on the particle is zero.
Net force, F4=0
Conclusion:
We can find net electrostatic force acting on a particle by knowing the magnitude and direction of the forces exerted by each of the particles present in the system.
Want to see more full solutions like this?
Chapter 21 Solutions
Fundamentals Of Physics - Volume 1 Only
Additional Science Textbook Solutions
Biology: Life on Earth (11th Edition)
Campbell Biology (11th Edition)
Campbell Biology: Concepts & Connections (9th Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
Chemistry & Chemical Reactivity
Organic Chemistry (8th Edition)
- Please solve and answer the problem correctly please.Thank you!!arrow_forwardWill you please walk me through the calculations in more detail for solving this problem? I am a bit rusty on calculus and confused about the specific steps of the derivation: https://www.bartleby.com/solution-answer/chapter-3-problem-15e-modern-physics-2nd-edition/9780805303087/7cf8c31d-9476-46d5-a5a9-b897b16fe6fcarrow_forwardplease help with the abstract. Abstract - This document outlines the format of the lab report and describes the Excel assignment. The abstract should be a short paragraph that very briefly includes the experiment objective, method, result and conclusion. After skimming the abstract, the reader should be able to decide whether they want to keep reading your work. Both the format of the report and the error analysis are to be followed. Note that abstract is not just the introduction and conclusion combined, but rather the whole experiment in short including the results. I have attacted the theory.arrow_forward
- Using the Experimental Acceleration due to Gravity values from each data table, Data Tables 1, 2, and 3; determine the Standard Deviation, σ, mean, μ, variance, σ2 and the 95% Margin of Error (Confidence Level) Data: Ex. Acc. 1: 12.29 m/s^2. Ex. Acc. 2: 10.86 m/s^2, Ex. Acc. 3: 9.05 m/s^2arrow_forwardIn the Super Smash Bros. games the character Yoshi’s has a “ground pound” down special move where he launches himself downward to attack an enemy beneath him. A) If Yoshi flings himself downwards at 9.76 miles per hour to hit an enemy 10.5 m below him, how fast is Yoshi traveling when he hits the enemy? 1 mile = 1609 m B) How much time does it take Yoshi to hit the enemy beneath him?arrow_forwardNo chatgpt pls will upvotearrow_forward
- 1.62 On a training flight, a Figure P1.62 student pilot flies from Lincoln, Nebraska, to Clarinda, Iowa, next to St. Joseph, Missouri, and then to Manhattan, Kansas (Fig. P1.62). The directions are shown relative to north: 0° is north, 90° is east, 180° is south, and 270° is west. Use the method of components to find (a) the distance she has to fly from Manhattan to get back to Lincoln, and (b) the direction (relative to north) she must fly to get there. Illustrate your solutions with a vector diagram. IOWA 147 km Lincoln 85° Clarinda 106 km 167° St. Joseph NEBRASKA Manhattan 166 km 235° S KANSAS MISSOURIarrow_forwardPlz no chatgpt pls will upvotearrow_forward3.19 • Win the Prize. In a carnival booth, you can win a stuffed gi- raffe if you toss a quarter into a small dish. The dish is on a shelf above the point where the quarter leaves your hand and is a horizontal dis- tance of 2.1 m from this point (Fig. E3.19). If you toss the coin with a velocity of 6.4 m/s at an angle of 60° above the horizontal, the coin will land in the dish. Ignore air resistance. (a) What is the height of the shelf above the point where the quarter leaves your hand? (b) What is the vertical component of the velocity of the quarter just before it lands in the dish? Figure E3.19 6.4 m/s 2.1arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College