Masteringphysics With Pearson Etext - Valuepack Access Card - For College Physics
Masteringphysics With Pearson Etext - Valuepack Access Card - For College Physics
10th Edition
ISBN: 9780321976932
Author: YOUNG
Publisher: PEARSON
bartleby

Concept explainers

Question
Book Icon
Chapter 21, Problem 1CQ
To determine

The direction of induced current when the current in first ring is increasing and decreasing.

Expert Solution & Answer
Check Mark

Answer to Problem 1CQ

The direction of induced current when the current in first ring is increasing is same as the first loop. When the current is decreasing, the induced current is opposite to that of the first loop.

Explanation of Solution

According to Lenz law, the direction of induced current is in such a way that it opposes the change that produces it. Initially, if it is assumed that the current in first loop is clockwise, then the direction of magnetic field into the plane of paper is leaving away. The magnetic field outside the first loop is pointed outside. In the second loop, the direction of field due to the induced current is into the paper. Therefore, to oppose the increasing flux, the direction of current in second loop must be same as the first loop.

When the current is decreasing, the magnetic flux is also decreasing in the direction outwards. Therefore, to oppose the change in magnetic flux, the induced current in the second loop is in the direction opposite to that of the first loop.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Lab-Based Section Use the following information to answer the lab based scenario. A student performed an experiment in an attempt to determine the index of refraction of glass. The student used a laser and a protractor to measure a variety of angles of incidence and refraction through a semi-circular glass prism. The design of the experiment and the student's results are shown below. Angle of Incidence (°) Angle of Refraction (º) 20 11 30 19 40 26 50 31 60 36 70 38 2a) By hand (i.e., without using computer software), create a linear graph on graph paper using the student's data. Note: You will have to manipulate the data in order to achieve a linear function. 2b) Graphically determine the index of refraction of the semi-circular glass prism, rounding your answer to the nearest hundredth.
Use the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.
Use the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.

Chapter 21 Solutions

Masteringphysics With Pearson Etext - Valuepack Access Card - For College Physics

Ch. 21 - A metal ring can be moved into and out of the...Ch. 21 - Prob. 12CQCh. 21 - A square loop of wire is pulled upward out of the...Ch. 21 - The two solenoids in Figure 21.36 are coaxial and...Ch. 21 - A metal ring is oriented with the plane of its...Ch. 21 - Prob. 4MCPCh. 21 - A metal loop moves at constant velocity toward a...Ch. 21 - A steady current of 1.5 A flows through the...Ch. 21 - Suppose you continue to hold the current in the...Ch. 21 - A vertical bar moves horizontally at constant...Ch. 21 - The vertical loops A and C in Figure 21.41 e are...Ch. 21 - The vertical loops A and C in Figure 21.41 e are...Ch. 21 - After the switch S in the circuit in Figure 21.42...Ch. 21 - A metal loop is being pushed at a constant...Ch. 21 - A circular area with a radius of 6.50 cm lies in...Ch. 21 - Prob. 2PCh. 21 - An empty cylindrical food container with a lid on...Ch. 21 - A single loop of wire with an area of 0.0900 m2 is...Ch. 21 - A coil of wire with 200 circular turns of radius...Ch. 21 - In a physics laboratory experiment, a coil with...Ch. 21 - A closely wound rectangular coil of 80 turns has...Ch. 21 - Prob. 8PCh. 21 - Prob. 9PCh. 21 - A circular loop of wire a radius of 12.0 cm is...Ch. 21 - A cardboard tube is wrapped with windings of...Ch. 21 - A circular loop of wire is in a soalially uniform...Ch. 21 - Prob. 13PCh. 21 - A solenoid carrying a current i is moving toward a...Ch. 21 - A metal bar is pulled to the right perpendicular...Ch. 21 - Two closed loops A and C are close to a long wire...Ch. 21 - A bar magnet is held above a circular loop of wire...Ch. 21 - The current in Figure 21.54 obeys the equation I =...Ch. 21 - A bar magnet is close to a metal loop. When this...Ch. 21 - A very thin 15.0 cm copper bar is aligned...Ch. 21 - When a thin 12.0 cm iron rod moves with a constant...Ch. 21 - You wish to produce a potential difference of 10 V...Ch. 21 - A 1.41 m bar moves through a uniform, 1.20 T...Ch. 21 - The conducting rod ab shown in Figure 21.58 makes...Ch. 21 - BO Measuring blood flow. Blood contains positive...Ch. 21 - Prob. 26PCh. 21 - Prob. 27PCh. 21 - Prob. 28PCh. 21 - Prob. 29PCh. 21 - Prob. 30PCh. 21 - Prob. 31PCh. 21 - Prob. 32PCh. 21 - Prob. 33PCh. 21 - Prob. 34PCh. 21 - Prob. 35PCh. 21 - A transformer consists of 275 primary windings and...Ch. 21 - You need a transformer that will draw 15 W of...Ch. 21 - A step-up transformer. A transformer connected to...Ch. 21 - Prob. 39PCh. 21 - Prob. 40PCh. 21 - Prob. 41PCh. 21 - A solenoid 25.0 cm long and with a cross-sectional...Ch. 21 - Prob. 43PCh. 21 - Prob. 44PCh. 21 - Prob. 45PCh. 21 - Prob. 46PCh. 21 - Prob. 47PCh. 21 - Prob. 48PCh. 21 - Prob. 49PCh. 21 - A 12.0 F capacitor and a 5.25 mH inductor are...Ch. 21 - Prob. 51PCh. 21 - A 15.0 F capacitor is charged to 175 C and then...Ch. 21 - Prob. 53GPCh. 21 - A rectangular circuit is moved at a constant...Ch. 21 - Prob. 55GPCh. 21 - A flexible circular loop 6.50 cm in diameter lies...Ch. 21 - Prob. 57GPCh. 21 - Prob. 58GPCh. 21 - Consider the circuit in Figure 21.64 (a) Just...Ch. 21 - How many turns does this typical MRI magnet have?...Ch. 21 - BIO Quenching an MRI magnet. Magnets carrying very...Ch. 21 - If part of the magnet develops resistance and...Ch. 21 - BIO Quenching an MRI magnet. Magnets carrying very...Ch. 21 - Prob. 64PPCh. 21 - Consider the brain tissue at the level of the...Ch. 21 - Prob. 66PPCh. 21 - Which graph best represents the time t dependence...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning