
Concept explainers
(a)
The density of matter in a neutron and compare it with the average density of a neutron star. It is given that neutron has a mass of
(a)

Answer to Problem 13Q
Solution:
The density of neutron is
Explanation of Solution
Given data:
The mass of a neutron is
Formula used:
Write the expression for density:
Here,
Write the expression for volume of a sphere:
Here,
Explanation:
Let’s assume that neutron is a sphere of radius
According to question, mass of neutron is
Calculate the volume of a sphere.
Refer to the expression for volume of sphere,
Substitute
Calculate density of neutron.
Refer to the expression of expression for density of a neutron star,
Substitute
Now, compare the density of matter in a neutron with average density of a neutron star.
As average density of neutron in neutron star is
Conclusion:
Hence, neutron has density of
(b)
Neutrons within a neutron star are overlapping if density of neutron star is more than that of neutron, or are underlapping otherwise. Also, explain whether density at the center of a neutron star is higher than the average density of neutron star. It is given that neutron has mass of
(b)

Answer to Problem 13Q
Solution:
As the density of neutron is less than the average density of a neutron star, therefore, neutrons in the neutron star are in overlapping state and density is uniform throughout the neutron star.
Explanation of Solution
Given data:
The mass of neutron is
Introduction:
A neutron star is composed of an incredibly dense sphere of neutrons formed by a supernova explosion. Its average density is about
Explanation:
Refer to part (a) of the question, the average density of neutron in a neutron star is
From the above observation, neutrons in the neutron star are overlapping as density of a neutron is less than the average density of a neutron star.
Also, in a neutron star, density is uniform throughout. In other words, density at the center is same as density at the surface of neutron star.
Conclusion:
Hence, neutrons in the neutron star are in overlapping state.
Want to see more full solutions like this?
Chapter 21 Solutions
Universe
- An infinitely long line of charge has linear charge density 4.00×10−12 C/m . A proton (mass 1.67×10−−27 kg, charge +1.60×10−19 C) is 18.0 cm from the line and moving directly toward the line at 4.10×103 m/s . How close does the proton get to the line of charge?arrow_forwardat a certain location the horizontal component of the earth’s magnetic field is 2.5 x 10^-5 T due north A proton moves eastward with just the right speed so the magnetic force on it balances its weight. Find the speed of the proton.arrow_forwardExample In Canada, the Earth has B = 0.5 mT, pointing north, 70.0° below the horizontal. a) Find the magnetic force on an oxygen ion (O) moving due east at 250 m/s b) Compare the |FB| to |FE| due to Earth's fair- weather electric field (150 V/m downward).arrow_forward
- Three charged particles are located at the corners of an equilateral triangle as shown in the figure below (let q = 2.20 µC, and L = 0.810 m). Calculate the total electric force on the 7.00-µC charge. What is the magnitude , what is the direction?arrow_forward(a) Calculate the number of electrons in a small, electrically neutral silver pin that has a mass of 9.0 g. Silver has 47 electrons per atom, and its molar mass is 107.87 g/mol. (b) Imagine adding electrons to the pin until the negative charge has the very large value 2.00 mC. How many electrons are added for every 109 electrons already present?arrow_forward(a) Calculate the number of electrons in a small, electrically neutral silver pin that has a mass of 13.0 g. Silver has 47 electrons per atom, and its molar mass is 107.87 g/mol.arrow_forward
- 8 Two moving charged particles exert forces on each other because each creates a magnetic field that acts on the other. These two "Lorentz" forces are proportional to vix (2 xr) and 2 x (vi x-r), where is the vector between the particle positions. Show that these two forces are equal and opposite in accordance with Newton's third law if and only if rx (vi × 2) = 0.arrow_forward6 The force = +3 + 2k acts at the point (1, 1, 1). Find the torque of the force about (a) (b) the point (2, -1, 5). Careful about the direction of ŕ between the two points. the line = 21-+5k+ (i-+2k)t. Note that the line goes through the point (2, -1, 5).arrow_forward5 Find the total work done by forces A and B if the object undergoes the displacement C. Hint: Can you add the two forces first?arrow_forward
- 1 F2 F₁ -F₁ F6 F₂ S A Work done on the particle as it moves through the displacement is positive. True False by the force Farrow_forwardA student measuring the wavelength produced by a vapour lamp directed the lightthrough two slits with a separation of 0.20 mm. An interference pattern was created on the screen,3.00 m away. The student found that the distance between the first and the eighth consecutive darklines was 8.0 cm. Draw a quick picture of the setup. What was the wavelength of the light emittedby the vapour lamp?arrow_forwardA ball is tied to one end of a string. The other end of the string is fixed. The ball is set in motion around a vertical circle without friction. At the top of the circle, the ball has a speed of ; = √√ Rg, as shown in the figure. At what angle should the string be cut so that the ball will travel through the center of the circle? The path after string is cut Rarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning





