Concept explainers
In 1927, the ophthalmologist George Waaler tested 9049 schoolboys in Oslo, Norway, for red-green color blindness and found 8324 of them to be normal and 725 to be color blind. He also tested 9072 schoolgirls and found 9032 that had normal color vision while 40 were color blind.
a. | Assuming that the same sex-linked recessive allele c causes all forms of red-green color blindness, calculate the allele frequencies of c and C (the allele for normal vision) from the data for the schoolboys. (Hint: Refer to your answer to Problem 12a.) |
b. | Does Waaler’s sample demonstrate Hardy-Weinberg equilibrium for alleles of this gene? Explain your answer by describing observations that are either consistent or inconsistent with this hypothesis. On closer analysis of these schoolchildren, Waaler found that there was actually more than one c allele causing color blindness in his sample: one kind for the prot type (cp ) and one for the deuter type (cd ). (Protanopia and deuteranopia are slightly different forms of red-green color blindness.) Importantly, some of the apparently normal females in Waaler’s studies were probably of genotype cp /cd . Through further analysis of the 40 color-blind females, he found that 3 were prot (cp /cp ), and 37 were deuter (cd /cd ). |
c. | Based on this new information, what are the frequencies of the cp, cd, and C alleles in the population examined by Waaler? Calculate these values as if the frequencies obey the Hardy-Weinberg equilibrium. (Note: Again, refer to your answer to Problem 12a.) |
d. | Calculate the frequencies of all genotypes expected among men and women if the population is at equilibrium. |
e. | Do these results make it more likely or less likely that the population in Oslo is indeed at equilibrium for red-green color blindness? Explain your reasoning. |
a.
To determine:
The allele frequencies of c and C.
Introduction:
George Waaler conducted a survey on color blindness. This survey was conducted in the year 1927. Around 9049 school boys and 9072 school girls were tested during this survey. The aim of this survey was to detect the average number of boys and girls that suffered from color blindness.
Explanation of Solution
Color blindness is a recessive trait. It is an X-linked disorder. This reflects that males are hemizygous for this trait. As a result, boys are the common sufferers of color-blindness.
The given information is as follows;
C is the allele for normal vision while c is the allele for color-blindness.
The formula to be used is as follows:
Substituting the given information in the above formula:
The allele frequencies of c and C are 0.92 and 0.08.
b.
To determine:
Whether Waaler’s sample demonstrated Hardy-Weinberg equilibrium for alleles.
Introduction:
Geoffrey H. Hardy was a scientist who proposed the concept of Hardy-Weinberg equilibrium. This concept is used to associate the allele frequency with the genotype frequency. The populations that have allele frequency and the genotypic frequency at equilibrium follow the concept of Hardy-Weinberg equilibrium.
Explanation of Solution
In case the population is at Hardy-Weinberg equilibrium, then the allele frequency of girls should be equal to the allele frequency of boys.
The given information is as follows:
Thus,
In case, the allele frequency of girls is at Hardy-Weinberg equilibrium, then
However, the allele frequency of c in boys is 0.08. This reflects that Waaler’s sample does not demonstrate Hardy-Weinberg equilibrium for alleles.
c.
To determine:
The frequencies of the cP, cd, and C alleles when the values of frequencies obey Hardy-Weinberg equilibrium:
Introduction:
Waaler discovered that there are two types of c alleles that are responsible for color blindness. These are prot type c allele (cp) and deuter type c allele (cd). The prot allele codes for protanopia color blindness while deuter allele codes for deuteranopia color blindness.
Explanation of Solution
The given information is as follows:
The people suffering from protanopia have cpcp while people deuteranopia has cdcd .
The formula to be used is as follows:
According to Hardy-Weinberg equilibrium:
Where:
p is the allele frequency of C
q is the allele frequency of c
The allele frequency of c (q) has been calculated as 0.082.
The frequency of C can be calculated by using the above formula:
Thus, frequencies of the cP, cd, and C alleles are 0.018, 0.064 and 0.918 respectively.
d.
To determine:
The frequencies of all genotypes if the population is at equilibrium.
Introduction
The set of the alleles in DNA that carries the information for the expression of a trait in an individual is known as its genotype. For example, genotype ‘TT’ expresses the tallness in plants.
Explanation of Solution
In case the population is at equilibrium, then the allele frequency and genotype frequencies of boys must be equal to the allele and genotype frequencies of girls.
Thus, frequencies of the cP, cd, and C alleles in boys are as follows:
The genotype frequencies in girls are as follows:
e.
To determine:
Whether the population in Oslo is more likely or less likely at equilibrium for color blindness.
Introduction:
The survey that was conducted by George Waaler was done on the school boys and school girls of Oslo. This survey helped in understanding the importance of Hardy-Weinberg equilibrium in studying red-green color blindness.
Explanation of Solution
The allele frequency of C is same in both boys and girls. The allele frequency of c in boys is also same as the allele frequency of c in girls. The frequencies of genotypes with normal and color blind vision are same in both boys and girls. This reflects that the population in Oslo is more likely at equilibrium for color blindness.
Want to see more full solutions like this?
Chapter 21 Solutions
Genetics: From Genes To Genomes (6th International Edition)
- Question #5: Assume that two genes are identified that confer gametophytic facultative apomixis in soybean. The genes show independent assortment. Recessive alleles at both loci are required for the facultative apomixis. Facultative apomixis is triggered when the temperature at pollination is above 20 degrees C. At temperatures below 20 degrees C, all reproduction is sexual, independent of genotype. A facultative apomict male, capable of producing viable pollen, was crossed with a sexually reproducing female. Assuming the parents are completely inbred, what are the predicted phenotypic ratios (apomict: non-apomict) for the F1, F2, and DH (F1-derived) generations at each of the following temperatures*: a) 15°C? b) 25°C? *for full credit, show crosses and genotypes where appropriate. Remember to position the female first (left side) in the cross. Type your answer here:arrow_forwarda. What percentage of a drug is eliminated after 4 half-lives? Please round to the nearest percent. b. What will happen to elimination of the drug in the previous question if the system is saturated? explain and show any math involvedarrow_forwardIf you wanted to reduce the difference between peak and trough levels that occur with repeated administration of a drug, how would you adjust the dose and dose interval without changing the plateau concentration (plateau is the average of peak and trough levels)? Select your answers for both dose and interval. Hint: It may be helpful to think about this problem using an example such as food. How would you eat if you wanted to maintain very steady hunger/satiety levels without changing your total caloric intake? Options: A. Dose; Increase dose B. Dose; Decrease dose C. Dose; Do not change dose D. Interval; Increase the interval between doses (give the drug less frequently) E. Interval; Decrease the interval between doses (give the drug more frequently) F. Interval; Do not change the intervalarrow_forward
- What percentage of a drug is eliminated after 4 half-lives? Please round to the nearest percent. Show the matharrow_forwardBriefly explain the 6 domain of interprofessional collaboration: Role clarification, Team functioning, Interprofessional communication, Patient/client/family/community-centered care, Interprofessional conflict resolution, Collaborative leadership. Provide a specific negative events that nursing student would observe in a clinical setting for each domain.arrow_forwardwhat is an intermittent water course and what kind of fish habitat it would providearrow_forward
- why are native freshwater mussels are an important part of great lakes ecosystemarrow_forwardwhat morphological features differentiate the lamprey species and other species in the great lakesarrow_forwardThere are a wide range of therapeutic applications available as options for patients. Medical professionals should be aware of these applications so they can make informed recommendations to patients. To gain a better understanding of some therapeutic applications and how they are related to RNA and mRNA, research long non-coding RNA. Respond to the following in a minimum of 175 words: What is lncRNA and what does it do? How does IncRNA differ from mRNA? What are some therapeutic applications associated with lncRNA? Think about possible future uses of this application. What are the advantages and disadvantages of this application and its continued use?arrow_forward
- four fish or mussel species that are native to the great lakesarrow_forwardThere are a wide range of therapeutic applications available as options for patients. Medical professionals should be aware of these applications so they can make informed recommendations to patients. To gain a better understanding of some therapeutic applications and how they are related to RNA and mRNA, research long non-coding RNA. Respond to the following in a minimum of 175 words: What is lncRNA and what does it do? How does IncRNA differ from mRNA? What are some therapeutic applications associated with lncRNA? Think about possible future uses of this application. What are the advantages and disadvantages of this application and its continued use?arrow_forwardfour physial characteristics of a fish or a mussel that would help you identify it to a speciesarrow_forward
- Human Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage LearningBiology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage LearningHuman Biology (MindTap Course List)BiologyISBN:9781305112100Author:Cecie Starr, Beverly McMillanPublisher:Cengage Learning
- Concepts of BiologyBiologyISBN:9781938168116Author:Samantha Fowler, Rebecca Roush, James WisePublisher:OpenStax CollegeBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStax