Concept explainers
Two hypothetical lizard populations found on opposite sides of a mountain in the Arizonan desert have two alleles (AF, AS ) of a single gene A with the following three genotype frequencies:
a. | What is the allele frequency of AF in the two populations? |
b. | Do either of the two populations appear to be at Hardy-Weinberg equilibrium? |
c. | A huge flood opened a canyon in the mountain range separating populations 1 and 2. They were then able to migrate such that the two populations, which were of equal size, mixed completely and mated at random. What are the frequencies of the three genotypes (AF AF, AF AS, and AS AS ) in the next generation of the single new population of lizards? |

a.
To determine:
The allele frequency of AF in the two populations.
Introduction:
The branch of genetics that studies the transmission of genetic material in a population is termed as population genetics. The proportion of gene copies that are of a common allele type in a population is termed as allele frequency. The allele frequency is important for understanding population genetics.
Explanation of Solution
The given information is as follows:
For population I:
Genotype frequency of AFAF = 38
Genotype frequency of AFAS = 44
Genotype frequency of ASAS = 18
Each genotype is composed of two alleles.
The formula to be used is as follows:
For population II:
Genotype frequency of AFAF = 0
Genotype frequency of AFAS = 80
Genotype frequency of ASAS = 20
Each genotype is composed of two alleles.
Thus, the allele frequency of AF in population I is 0.6 and allele frequency of AF in population II is 0.4.

b.
To determine:
Whether both the population appears to be at Hardy-Weinberg equilibrium.
Introduction:
Geoffrey H. Hardy was a scientist who proposed the concept of Hardy-Weinberg equilibrium. This concept is used to associate the allele frequency with the genotype frequency. The populations that have allele frequency and the genotypic frequency at equilibrium follow the concept of Hardy-Weinberg equilibrium.
Explanation of Solution
According to Hardy-Weinberg equilibrium:
Where:
p is the allele frequency of AF
q is the allele frequency of AS
For population I:
The allele frequency of AF (p) = 0.6
The allele frequency of AS (q) = 0.4
The formula to be used is as follows:
Substituting the value of p = 0.6 and q = 0.4 in the above formula gives the following result:
This indicates that the population I appear to be at Hardy-Weinberg equilibrium.
For population II:
The allele frequency of AF (p) = 0.4
The allele frequency of AS (q) = 0.6
The formula to be used is as follows:
Substituting the value of p = 0.4 and q = 0.6 in the above formula gives the following result:
This reflects that population II appears to be at Hardy-Weinberg equilibrium.
Thus, both population I and population II are at Hardy-Weinberg equilibrium.

c.
To determine:
The frequency of genotypes (AF AF, AF AS, and AS AS ) in the next generation.
Introduction:
The set of the alleles in DNA that carries the information for the expression of a trait in an individual is known as its genotype. For example, genotype ‘TT’ expresses the tallness in plants. The genotypes are responsible for controlling the expression of traits.
Explanation of Solution
The following table represents the population number of a single population after a natural calamity:
Population | AF AF | AF AS | AS AS | Total |
Population I | 38 | 44 | 18 | |
Population II | 0 | 80 | 20 | |
Single population |
Each genotype is composed of two alleles.
The formula to be used is as follows:
The allele frequency of AF is represented as “p”.
The allele frequency of AS is represented as “q”.
The frequencies of three genotypes among zygotes due to random mating are as follows:
Thus, the genotype frequency of AF AF in the next generation is 0.25, AF AS is 0.5, and AS AS is also 0.5.
Want to see more full solutions like this?
Chapter 21 Solutions
GENETICS(LL)-W/CONNECT >CUSTOM<
- avorite Contact avorite Contact favorite Contact ୫ Recant Contacts Keypad Messages Pairing ง 107.5 NE Controls Media Apps Radio Nav Phone SCREEN OFF Safari File Edit View History Bookmarks Window Help newconnect.mheducation.com M Sign in... S The Im... QFri May 9 9:23 PM w The Im... My first.... Topic: Mi Kimberl M Yeast F Connection lost! You are not connected to internet Sigh in... Sign in... The Im... S Workin... The Im. INTRODUCTION LABORATORY SIMULATION Tube 1 Fructose) esc - X Tube 2 (Glucose) Tube 3 (Sucrose) Tube 4 (Starch) Tube 5 (Water) CO₂ Bubble Height (mm) How to Measure 92 3 5 6 METHODS RESET #3 W E 80 A S D 9 02 1 2 3 5 2 MY NOTES LAB DATA SHOW LABELS % 5 T M dtv 96 J: ப 27 כ 00 alt A DII FB G H J K PHASE 4: Measure gas bubble Complete the following steps: Select ruler and place next to tube 1. Measure starting height of gas bubble in respirometer 1. Record in Lab Data Repeat measurement for tubes 2-5 by selecting ruler and move next to each tube. Record each in Lab Data…arrow_forwardCh.23 How is Salmonella able to cross from the intestines into the blood? A. it is so small that it can squeeze between intestinal cells B. it secretes a toxin that induces its uptake into intestinal epithelial cells C. it secretes enzymes that create perforations in the intestine D. it can get into the blood only if the bacteria are deposited directly there, that is, through a puncture — Which virus is associated with liver cancer? A. hepatitis A B. hepatitis B C. hepatitis C D. both hepatitis B and C — explain your answer thoroughlyarrow_forwardCh.21 What causes patients infected with the yellow fever virus to turn yellow (jaundice)? A. low blood pressure and anemia B. excess leukocytes C. alteration of skin pigments D. liver damage in final stage of disease — What is the advantage for malarial parasites to grow and replicate in red blood cells? A. able to spread quickly B. able to avoid immune detection C. low oxygen environment for growth D. cooler area of the body for growth — Which microbe does not live part of its lifecycle outside humans? A. Toxoplasma gondii B. Cytomegalovirus C. Francisella tularensis D. Plasmodium falciparum — explain your answer thoroughlyarrow_forward
- Ch.22 Streptococcus pneumoniae has a capsule to protect it from killing by alveolar macrophages, which kill bacteria by… A. cytokines B. antibodies C. complement D. phagocytosis — What fact about the influenza virus allows the dramatic antigenic shift that generates novel strains? A. very large size B. enveloped C. segmented genome D. over 100 genes — explain your answer thoroughlyarrow_forwardWhat is this?arrow_forwardMolecular Biology A-C components of the question are corresponding to attached image labeled 1. D component of the question is corresponding to attached image labeled 2. For a eukaryotic mRNA, the sequences is as follows where AUGrepresents the start codon, the yellow is the Kozak sequence and (XXX) just represents any codonfor an amino acid (no stop codons here). G-cap and polyA tail are not shown A. How long is the peptide produced?B. What is the function (a sentence) of the UAA highlighted in blue?C. If the sequence highlighted in blue were changed from UAA to UAG, how would that affecttranslation? D. (1) The sequence highlighted in yellow above is moved to a new position indicated below. Howwould that affect translation? (2) How long would be the protein produced from this new mRNA? Thank youarrow_forward
- Molecular Biology Question Explain why the cell doesn’t need 61 tRNAs (one for each codon). Please help. Thank youarrow_forwardMolecular Biology You discover a disease causing mutation (indicated by the arrow) that alters splicing of its mRNA. This mutation (a base substitution in the splicing sequence) eliminates a 3’ splice site resulting in the inclusion of the second intron (I2) in the final mRNA. We are going to pretend that this intron is short having only 15 nucleotides (most introns are much longer so this is just to make things simple) with the following sequence shown below in bold. The ( ) indicate the reading frames in the exons; the included intron 2 sequences are in bold. A. Would you expected this change to be harmful? ExplainB. If you were to do gene therapy to fix this problem, briefly explain what type of gene therapy youwould use to correct this. Please help. Thank youarrow_forwardMolecular Biology Question Please help. Thank you Explain what is meant by the term “defective virus.” Explain how a defective virus is able to replicate.arrow_forward
- Molecular Biology Explain why changing the codon GGG to GGA should not be harmful. Please help . Thank youarrow_forwardStage Percent Time in Hours Interphase .60 14.4 Prophase .20 4.8 Metaphase .10 2.4 Anaphase .06 1.44 Telophase .03 .72 Cytukinesis .01 .24 Can you summarize the results in the chart and explain which phases are faster and why the slower ones are slow?arrow_forwardCan you circle a cell in the different stages of mitosis? 1.prophase 2.metaphase 3.anaphase 4.telophase 5.cytokinesisarrow_forward
- Human Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage LearningBiology: The Dynamic Science (MindTap Course List)BiologyISBN:9781305389892Author:Peter J. Russell, Paul E. Hertz, Beverly McMillanPublisher:Cengage LearningBiology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage Learning
- Case Studies In Health Information ManagementBiologyISBN:9781337676908Author:SCHNERINGPublisher:CengageConcepts of BiologyBiologyISBN:9781938168116Author:Samantha Fowler, Rebecca Roush, James WisePublisher:OpenStax CollegeHuman Biology (MindTap Course List)BiologyISBN:9781305112100Author:Cecie Starr, Beverly McMillanPublisher:Cengage Learning




