Concept explainers
The kind of force that produce
Answer to Problem 1PLA
The force directed towards the equilibrium position produce simple harmonic motion and
Explanation of Solution
Simple harmonic motion is a type of oscillating motion in which the displacement of mass moving in one dimension is described by a single sine or cosine function.
Force of the mass with simple harmonic motion is directly proportional to the magnitude of the displacement from its equilibrium position and its direction must be towards the equilibrium position of the mass.
Write the equation of force for simple harmonic motion
Here,
Conclusion:
Therefore, the force directed towards the equilibrium position produce simple harmonic motion and
Want to see more full solutions like this?
Chapter 20A Solutions
Physics Laboratory Manual
- In an engine, a piston oscillates with simple harmonic motion so that its position varies according to the expression x=5.00cos(2t+6) where x is in centimeters and t is in seconds. At t = 0, find (a) the position of the piston, (b) its velocity, and (c) its acceleration. Find (d) the period and (e) the amplitude of the motion.arrow_forwardIn an engine, a piston oscillates with simpler harmonic motion so that its position varies according to the expression x=5.00cos(2t+6) where x is in centimeters and t is in seconds. At t = O. find (a) the position of the particle, (b) its velocity, and (c) its acceleration. Find (d) the period and (e) the amplitude of the motion.arrow_forwardA particle of mass m moving in one dimension has potential energy U(x) = U0[2(x/a)2 (x/a)4], where U0 and a are positive constants. (a) Find the force F(x), which acts on the particle. (b) Sketch U(x). Find the positions of stable and unstable equilibrium. (c) What is the angular frequency of oscillations about the point of stable equilibrium? (d) What is the minimum speed the particle must have at the origin to escape to infinity? (e) At t = 0 the particle is at the origin and its velocity is positive and equal in magnitude to the escape speed of part (d). Find x(t) and sketch the result.arrow_forward
- (a) If frequency is not constant for some oscillation, can the oscillation be SHM? (b) Can you think of any examples of harmonic motion where the frequency may depend on the amplitude?arrow_forwardObtain an expression for the fraction of a complete period that a simple harmonic oscillator spends within a small interval Δx at a position x. Sketch curves of this function versus x for several different amplitudes. Discuss the physical significance of the results. Comment on the areas under the various curves.arrow_forwardThe device pictured in the following figure entertains infants while keeping them from wandering. The child bounces in a harness suspended from a door frame by a spring. (a) If the spring stretches 0.250 m while supporting an 8.0-kg child, what is its force constant? (b) What is the time for one complete bounce of this child? (c) What is the child’s maximum velocity if the amplitude of her bounce is 0.200 m?arrow_forward
- A block with mass m = 0.1 kg oscillates with amplitude .A = 0.1 in at the end of a spring with force constant k = 10 N/m on a frictionless, horizontal surface. Rank the periods of the following situations from greatest to smallest. If any periods are equal, show their equality in your tanking, (a) The system is as described above, (b) The system is as described in situation (a) except the amplitude is 0.2 m. (c) The situation is as described in situation (a) except the mass is 0.2 kg. (d) The situation is as described in situation (a) except the spring has force constant 20 N/m. (e) A small resistive force makes the motion underdamped.arrow_forwardA simple harmonic oscillator has amplitude A and period T. Find the minimum time required for its position to change from x = A to x = A/2 in terms of the period T.arrow_forward(a) If frequency is not constant for some oscillation, can the oscillation be simple harmonic motion? (b) Can you mink of any examples of harmonic motion where the frequency may depend on the amplitude?arrow_forward
- Consider the damped oscillator illustrated in Figure 12.16a. The mass of the object is 375 g, the spring constant is 100 N/m, and b = 0.100 N s/m. (a) Over what time interval does the amplitude drop to half its initial value? (b) What If? Over what time interval does the mechanical energy drop to half its initial value? (c) Show that, in general, the fractional rate at which the amplitude decreases in a damped harmonic oscillator is one-half the fractional rate at which the mechanical energy decreases.arrow_forwardHow would a car bounce after a bump under each of these conditions? (a) overdamping (b) underdamping (c) critical dampingarrow_forwardAllow the motion in the preceding problem to take place in a resisting medium. After oscillating for 10 s, the maximum amplitude decreases to half the initial value. Calculate (a) the damping parameter β, (b) the frequency υ1 (compare with the undamped frequency υ0), and (c) the decrement of the motion.arrow_forward
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning