
(a)
Interpretation:
The given starting compounds and selective reagents used to accomplish the target products transformation should be draw and identified.
Concept Introduction:
Wittig reaction: This process allows the preparation of an alkene by the reaction of an aldehyde (
Condensation reaction: The several organic reactions that proceeds in a step-wise reaction to produce the addition product. This type of reaction involves the formation of ammonia, ethanol or mineral acids, it is a versatile class of reaction that can occur in acidic or basic conditions or in the presence of catalyst.
Hydrolysis Reaction: This type of reaction involving the braking of a carbon-carbon triple, double bonds in a molecules using water or diluted acid such as (HCl,
Meta-chloroperoxybenzoic acid (m-CPBA): This reagent is extremely useful reagent most frequently encountered in the synthesis of
Hydrate formation: hydronium ion is the main reagent for hydrate formation.
Conversion of a carbonyl group to a hydrate. this process is only efficient for formaldehyde and some simple
For ketone, the equilibrium generally does not favor formation of the hydrate.
LAH :-( Lithium Aluminum Hydride) this reagent is very useful for reduction.
It reduces aldehyde or ketone to an alcohol.
Acid Catalyzed Hydration Reaction: The reaction involves breaking of π-bonds between carbon-carbon multiple bonds and addition of alcohol to more substituted position of carbon in the molecule.
Nucleophiles: A nucleophile is a more reactant species that affords a pair of electrons to the electrophile or electrophilic center and forms a new covalent bond. The carbon or other hetero atom in a molecule which is bearing negative charge or lone pair of electron is called as nucleophiles.
Electrophile: An electrophile is a species that accepts a pair of electrons to form a new covalent bond.
Addition Reaction: It is defined as
Halogenation: The addition of halogen atoms to a
Ozonolysis is an organic reaction where the unsaturated bonds of alkenes or azo compounds are cleaved with ozone.
Alkenes and alkynes from organic compound in which the multiple carbon-carbon bonds has been from nitrosamines.
Grignard Reaction: This is an organometallic reaction in different alkyl, aryl-magnesium halides add to a carbonyl group in an aldehyde and ketone. This reaction is an important for the conversion of carbon-carbon single (-C-C-) bond. Moreover the addition of a reagent to an aster, lactone gives a tertiary alcohol in which two alkyl groups are the same and the addition of a Grignard reagent to a nitrile produces an unsymmetrical ketone.
To identify: The reagents used to accomplish the given transformation.
(b)
Interpretation:
The given starting compounds and selective reagents used to accomplish the target products transformation should be draw and identified.
Concept Introduction:
Wittig reaction: This process allows the preparation of an alkene by the reaction of an aldehyde (
Condensation reaction: The several organic reactions that proceeds in a step-wise reaction to produce the addition product. This type of reaction involves the formation of ammonia, ethanol or mineral acids, it is a versatile class of reaction that can occur in acidic or basic conditions or in the presence of catalyst.
Hydrolysis Reaction: This type of reaction involving the braking of a carbon-carbon triple, double bonds in a molecules using water or diluted acid such as (HCl,
Meta-chloroperoxybenzoic acid (m-CPBA): This reagent is extremely useful reagent most frequently encountered in the synthesis of epoxides when added to alkenes or alkynes.
Hydrate formation: hydronium ion is the main reagent for hydrate formation.
Conversion of a carbonyl group to a hydrate. this process is only efficient for formaldehyde and some simple aldehydes.
For ketone, the equilibrium generally does not favor formation of the hydrate.
LAH :-( Lithium Aluminum Hydride) this reagent is very useful for reduction.
It reduces aldehyde or ketone to an alcohol.
Acid Catalyzed Hydration Reaction: The reaction involves breaking of π-bonds between carbon-carbon multiple bonds and addition of alcohol to more substituted position of carbon in the molecule.
Nucleophiles: A nucleophile is a more reactant species that affords a pair of electrons to the electrophile or electrophilic center and forms a new covalent bond. The carbon or other hetero atom in a molecule which is bearing negative charge or lone pair of electron is called as nucleophiles.
Electrophile: An electrophile is a species that accepts a pair of electrons to form a new covalent bond.
Addition Reaction: It is defined as chemical reaction in which two given molecules combines and forms product. The types of addition reactions are electrophilic addition, nucleophilic addition, free radical additions and cycloadditions. Generally, compounds with carbon-hetero atom bonds favors addition reaction.
Halogenation: The addition of halogen atoms to a
Ozonolysis is an organic reaction where the unsaturated bonds of alkenes or azo compounds are cleaved with ozone.
Alkenes and alkynes from organic compound in which the multiple carbon-carbon bonds has been from nitrosamines.
Grignard Reaction: This is an organometallic reaction in different alkyl, aryl-magnesium halides add to a carbonyl group in an aldehyde and ketone. This reaction is an important for the conversion of carbon-carbon single (-C-C-) bond. Moreover the addition of a reagent to an aster, lactone gives a tertiary alcohol in which two alkyl groups are the same and the addition of a Grignard reagent to a nitrile produces an unsymmetrical ketone.
To identify: The reagents used to accomplish the given transformation.
(c)
Interpretation:
The given starting compounds and selective reagents used to accomplish the target products transformation should be draw and identified.
Concept Introduction:
Wittig reaction: This process allows the preparation of an alkene by the reaction of an aldehyde (
Condensation reaction: The several organic reactions that proceeds in a step-wise reaction to produce the addition product. This type of reaction involves the formation of ammonia, ethanol or mineral acids, it is a versatile class of reaction that can occur in acidic or basic conditions or in the presence of catalyst.
Hydrolysis Reaction: This type of reaction involving the braking of a carbon-carbon triple, double bonds in a molecules using water or diluted acid such as (HCl,
Meta-chloroperoxybenzoic acid (m-CPBA): This reagent is extremely useful reagent most frequently encountered in the synthesis of epoxides when added to alkenes or alkynes.
Hydrate formation: hydronium ion is the main reagent for hydrate formation.
Conversion of a carbonyl group to a hydrate. this process is only efficient for formaldehyde and some simple aldehydes.
For ketone, the equilibrium generally does not favor formation of the hydrate.
LAH :-( Lithium Aluminum Hydride) this reagent is very useful for reduction.
It reduces aldehyde or ketone to an alcohol.
Acid Catalyzed Hydration Reaction: The reaction involves breaking of π-bonds between carbon-carbon multiple bonds and addition of alcohol to more substituted position of carbon in the molecule.
Nucleophiles: A nucleophile is a more reactant species that affords a pair of electrons to the electrophile or electrophilic center and forms a new covalent bond. The carbon or other hetero atom in a molecule which is bearing negative charge or lone pair of electron is called as nucleophiles.
Electrophile: An electrophile is a species that accepts a pair of electrons to form a new covalent bond.
Addition Reaction: It is defined as chemical reaction in which two given molecules combines and forms product. The types of addition reactions are electrophilic addition, nucleophilic addition, free radical additions and cycloadditions. Generally, compounds with carbon-hetero atom bonds favors addition reaction.
Halogenation: The addition of halogen atoms to a
Ozonolysis is an organic reaction where the unsaturated bonds of alkenes or azo compounds are cleaved with ozone.
Alkenes and alkynes from organic compound in which the multiple carbon-carbon bonds has been from nitrosamines.
Grignard Reaction: This is an organometallic reaction in different alkyl, aryl-magnesium halides add to a carbonyl group in an aldehyde and ketone. This reaction is an important for the conversion of carbon-carbon single (-C-C-) bond. Moreover the addition of a reagent to an aster, lactone gives a tertiary alcohol in which two alkyl groups are the same and the addition of a Grignard reagent to a nitrile produces an unsymmetrical ketone.
To identify: The reagents used to accomplish the given transformation.
(d)
Interpretation:
The given starting compounds and selective reagents used to accomplish the target products transformation should be draw and identified.
Concept Introduction:
Wittig reaction: This process allows the preparation of an alkene by the reaction of an aldehyde (
Condensation reaction: The several organic reactions that proceeds in a step-wise reaction to produce the addition product. This type of reaction involves the formation of ammonia, ethanol or mineral acids, it is a versatile class of reaction that can occur in acidic or basic conditions or in the presence of catalyst.
Hydrolysis Reaction: This type of reaction involving the braking of a carbon-carbon triple, double bonds in a molecules using water or diluted acid such as (HCl,
Meta-chloroperoxybenzoic acid (m-CPBA): This reagent is extremely useful reagent most frequently encountered in the synthesis of epoxides when added to alkenes or alkynes.
Hydrate formation: hydronium ion is the main reagent for hydrate formation.
Conversion of a carbonyl group to a hydrate. this process is only efficient for formaldehyde and some simple aldehydes.
For ketone, the equilibrium generally does not favor formation of the hydrate.
LAH :-( Lithium Aluminum Hydride) this reagent is very useful for reduction.
It reduces aldehyde or ketone to an alcohol.
Acid Catalyzed Hydration Reaction: The reaction involves breaking of π-bonds between carbon-carbon multiple bonds and addition of alcohol to more substituted position of carbon in the molecule.
Nucleophiles: A nucleophile is a more reactant species that affords a pair of electrons to the electrophile or electrophilic center and forms a new covalent bond. The carbon or other hetero atom in a molecule which is bearing negative charge or lone pair of electron is called as nucleophiles.
Electrophile: An electrophile is a species that accepts a pair of electrons to form a new covalent bond.
Addition Reaction: It is defined as chemical reaction in which two given molecules combines and forms product. The types of addition reactions are electrophilic addition, nucleophilic addition, free radical additions and cycloadditions. Generally, compounds with carbon-hetero atom bonds favors addition reaction.
Halogenation: The addition of halogen atoms to a
Ozonolysis is an organic reaction where the unsaturated bonds of alkenes or azo compounds are cleaved with ozone.
Alkenes and alkynes from organic compound in which the multiple carbon-carbon bonds has been from nitrosamines.
Grignard Reaction: This is an organometallic reaction in different alkyl, aryl-magnesium halides add to a carbonyl group in an aldehyde and ketone. This reaction is an important for the conversion of carbon-carbon single (-C-C-) bond. Moreover the addition of a reagent to an aster, lactone gives a tertiary alcohol in which two alkyl groups are the same and the addition of a Grignard reagent to a nitrile produces an unsymmetrical ketone.
To identify: The reagents used to accomplish the given transformation.
(e)
Interpretation:
The given starting compounds and selective reagents used to accomplish the target products transformation should be draw and identified.
Concept Introduction:
Wittig reaction: This process allows the preparation of an alkene by the reaction of an aldehyde (
Condensation reaction: The several organic reactions that proceeds in a step-wise reaction to produce the addition product. This type of reaction involves the formation of ammonia, ethanol or mineral acids, it is a versatile class of reaction that can occur in acidic or basic conditions or in the presence of catalyst.
Hydrolysis Reaction: This type of reaction involving the braking of a carbon-carbon triple, double bonds in a molecules using water or diluted acid such as (HCl,
Meta-chloroperoxybenzoic acid (m-CPBA): This reagent is extremely useful reagent most frequently encountered in the synthesis of epoxides when added to alkenes or alkynes.
Hydrate formation: hydronium ion is the main reagent for hydrate formation.
Conversion of a carbonyl group to a hydrate. this process is only efficient for formaldehyde and some simple aldehydes.
For ketone, the equilibrium generally does not favor formation of the hydrate.
LAH :-( Lithium Aluminum Hydride) this reagent is very useful for reduction.
It reduces aldehyde or ketone to an alcohol.
Acid Catalyzed Hydration Reaction: The reaction involves breaking of π-bonds between carbon-carbon multiple bonds and addition of alcohol to more substituted position of carbon in the molecule.
Nucleophiles: A nucleophile is a more reactant species that affords a pair of electrons to the electrophile or electrophilic center and forms a new covalent bond. The carbon or other hetero atom in a molecule which is bearing negative charge or lone pair of electron is called as nucleophiles.
Electrophile: An electrophile is a species that accepts a pair of electrons to form a new covalent bond.
Addition Reaction: It is defined as chemical reaction in which two given molecules combines and forms product. The types of addition reactions are electrophilic addition, nucleophilic addition, free radical additions and cycloadditions. Generally, compounds with carbon-hetero atom bonds favors addition reaction.
Halogenation: The addition of halogen atoms to a
Ozonolysis is an organic reaction where the unsaturated bonds of alkenes or azo compounds are cleaved with ozone.
Alkenes and alkynes from organic compound in which the multiple carbon-carbon bonds has been from nitrosamines.
Grignard Reaction: This is an organometallic reaction in different alkyl, aryl-magnesium halides add to a carbonyl group in an aldehyde and ketone. This reaction is an important for the conversion of carbon-carbon single (-C-C-) bond. Moreover the addition of a reagent to an aster, lactone gives a tertiary alcohol in which two alkyl groups are the same and the addition of a Grignard reagent to a nitrile produces an unsymmetrical ketone.
To identify: The reagents used to accomplish the given transformation.
(f)
Interpretation:
The given starting compounds and selective reagents used to accomplish the target products transformation should be draw and identified.
Concept Introduction:
Wittig reaction: This process allows the preparation of an alkene by the reaction of an aldehyde (
Condensation reaction: The several organic reactions that proceeds in a step-wise reaction to produce the addition product. This type of reaction involves the formation of ammonia, ethanol or mineral acids, it is a versatile class of reaction that can occur in acidic or basic conditions or in the presence of catalyst.
Hydrolysis Reaction: This type of reaction involving the braking of a carbon-carbon triple, double bonds in a molecules using water or diluted acid such as (HCl,
Meta-chloroperoxybenzoic acid (m-CPBA): This reagent is extremely useful reagent most frequently encountered in the synthesis of epoxides when added to alkenes or alkynes.
Hydrate formation: hydronium ion is the main reagent for hydrate formation.
Conversion of a carbonyl group to a hydrate. this process is only efficient for formaldehyde and some simple aldehydes.
For ketone, the equilibrium generally does not favor formation of the hydrate.
LAH :-( Lithium Aluminum Hydride) this reagent is very useful for reduction.
It reduces aldehyde or ketone to an alcohol.
Acid Catalyzed Hydration Reaction: The reaction involves breaking of π-bonds between carbon-carbon multiple bonds and addition of alcohol to more substituted position of carbon in the molecule.
Nucleophiles: A nucleophile is a more reactant species that affords a pair of electrons to the electrophile or electrophilic center and forms a new covalent bond. The carbon or other hetero atom in a molecule which is bearing negative charge or lone pair of electron is called as nucleophiles.
Electrophile: An electrophile is a species that accepts a pair of electrons to form a new covalent bond.
Addition Reaction: It is defined as chemical reaction in which two given molecules combines and forms product. The types of addition reactions are electrophilic addition, nucleophilic addition, free radical additions and cycloadditions. Generally, compounds with carbon-hetero atom bonds favors addition reaction.
Halogenation: The addition of halogen atoms to a
Ozonolysis is an organic reaction where the unsaturated bonds of alkenes or azo compounds are cleaved with ozone.
Alkenes and alkynes from organic compound in which the multiple carbon-carbon bonds has been from nitrosamines.
Grignard Reaction: This is an organometallic reaction in different alkyl, aryl-magnesium halides add to a carbonyl group in an aldehyde and ketone. This reaction is an important for the conversion of carbon-carbon single (-C-C-) bond. Moreover the addition of a reagent to an aster, lactone gives a tertiary alcohol in which two alkyl groups are the same and the addition of a Grignard reagent to a nitrile produces an unsymmetrical ketone.
To identify: The reagents used to accomplish the given transformation.
(g)
Interpretation:
The given starting compounds and selective reagents used to accomplish the target products transformation should be draw and identified.
Concept Introduction:
Wittig reaction: This process allows the preparation of an alkene by the reaction of an aldehyde (
Condensation reaction: The several organic reactions that proceeds in a step-wise reaction to produce the addition product. This type of reaction involves the formation of ammonia, ethanol or mineral acids, it is a versatile class of reaction that can occur in acidic or basic conditions or in the presence of catalyst.
Hydrolysis Reaction: This type of reaction involving the braking of a carbon-carbon triple, double bonds in a molecules using water or diluted acid such as (HCl,
Meta-chloroperoxybenzoic acid (m-CPBA): This reagent is extremely useful reagent most frequently encountered in the synthesis of epoxides when added to alkenes or alkynes.
Hydrate formation: hydronium ion is the main reagent for hydrate formation.
Conversion of a carbonyl group to a hydrate. this process is only efficient for formaldehyde and some simple aldehydes.
For ketone, the equilibrium generally does not favor formation of the hydrate.
LAH :-( Lithium Aluminum Hydride) this reagent is very useful for reduction.
It reduces aldehyde or ketone to an alcohol.
Acid Catalyzed Hydration Reaction: The reaction involves breaking of π-bonds between carbon-carbon multiple bonds and addition of alcohol to more substituted position of carbon in the molecule.
Nucleophiles: A nucleophile is a more reactant species that affords a pair of electrons to the electrophile or electrophilic center and forms a new covalent bond. The carbon or other hetero atom in a molecule which is bearing negative charge or lone pair of electron is called as nucleophiles.
Electrophile: An electrophile is a species that accepts a pair of electrons to form a new covalent bond.
Addition Reaction: It is defined as chemical reaction in which two given molecules combines and forms product. The types of addition reactions are electrophilic addition, nucleophilic addition, free radical additions and cycloadditions. Generally, compounds with carbon-hetero atom bonds favors addition reaction.
Halogenation: The addition of halogen atoms to a
Ozonolysis is an organic reaction where the unsaturated bonds of alkenes or azo compounds are cleaved with ozone.
Alkenes and alkynes from organic compound in which the multiple carbon-carbon bonds has been from nitrosamines.
Grignard Reaction: This is an organometallic reaction in different alkyl, aryl-magnesium halides add to a carbonyl group in an aldehyde and ketone. This reaction is an important for the conversion of carbon-carbon single (-C-C-) bond. Moreover the addition of a reagent to an aster, lactone gives a tertiary alcohol in which two alkyl groups are the same and the addition of a Grignard reagent to a nitrile produces an unsymmetrical ketone.
To identify: The reagents used to accomplish the given transformation.

Want to see the full answer?
Check out a sample textbook solution
Chapter 20 Solutions
Student Study Guide and Solutions Manual T/A Organic Chemistry
- Complete the following esterification reaction by drawing the structural formula of the product formed. HOH HO i catalyst catalyst OH HO (product has rum flavor) (product has orange flavor)arrow_forwardThe statements in the tables below are about two different chemical equilibria. The symbols have their usual meaning, for example AG stands for the standard Gibbs free energy of reaction and K stands for the equilibrium constant. In each table, there may be one statement that is faise because it contradicts the other three statements. If you find a false statement, check the box next to t Otherwise, check the "no false statements" box under the table. statement false? AG"1 no false statements: statement false? AG-0 0 InK-0 0 K-1 0 AH-TAS no false statements 2arrow_forwardComplete the following esterification reactions by drawing the line formulas of the carboxylic acid and alcohol required to form the ester shown. catalyst catalyst catalyst apricot fragrancearrow_forward
- Show the saponification products of the following ester: You don't need to draw in the Na+ cation. catalyst, A catalyst, A catalyst, Aarrow_forwardWhat would happen if the carboxylic acid and alcohol groups were on the same molecule? In essence, the molecule reacts with itself. Draw the structure of the products formed in this manner using the reactants below. If two functional groups interact with one another on the same molecule, this is called an “intramolecular" (within one) rather than "intermolecular" (between two or more) attack. OH OH catalyst OH HO catalyst catalyst HO OHarrow_forwardQ3: Write in the starting alkyl bromide used to form the following products. Include any reactants, reagents, and solvents over the reaction arrow. If more than one step is required, denote separate steps by using 1), 2), 3), etc. H OH racemic OH OH 5 racemicarrow_forward
- Draw the Lewis structure of the SO3-O(CH3)2 complex shown in the bottom right of slide 2in lecture 3-3 (“Me” means a CH3 group) – include all valence electron pairs and formal charges.From this structure, should the complex be a stable molecule? Explain.arrow_forwardPredict all organic product(s), including stereoisomers when applicable.arrow_forwardQ5: Propose a reasonable synthesis for the following decalin derivative. using only decalin and alkanes of 3 or fewer carbons. Decalin H3C HO க CH3arrow_forward
- 2Helparrow_forwardplease add appropriate arrows, and tell me clearly where to add arrows, or draw itarrow_forwardWhat I Have Learned Directions: Given the following reaction and the stress applied in each reaction, answer the question below. A. H2(g) + Cl2(g) 2 HCl(g) Stress applied: Decreasing the pressure 1. What is the Keq expression? 2. What will be the effect in the number of moles of HCl(g)? 3. What will be the Equilibrium Shift or the reaction? B. Fe3O4(s) + 4 H2(g) + heat 53 Fe(s) + 4 H₂O(g) Stress applied: Increasing the temperature 1. What is the Keq expression?. 2. What will be the effect in the volume of water vapor collected? 3. What will be the Equilibrium Shift or the reaction? C. 4 NH3(g) + 5 O2(g) 4 NO(g) + 6 H2O(g) + heat Stress applied: Increasing the volume of the container 1. What is the Keq expression?. 2. What will be the effect in the amount of H₂O? 3. What will be the Equilibrium Shift or the reaction?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





