Predict/Calculate Computer Keyboards Many computer keyboards operate on the principle of capacitance. As shown in Figure 20-18 , each key forms a small parallel-plate capacitor whose separation is reduced when the key is depressed. (a) Does depressing a key increase or decrease its capacitance? Explain. (b) Suppose the plates for each key have an area of 47.5 mm 2 and an initial separation of 0.550 mm. In addition, let the dielectric have a dielectric constant of 3.75. If the circuitry of the computer can detect a change in capacitance of 0.425 pF, what is the minimum distance a key must be depressed to be detected?
Predict/Calculate Computer Keyboards Many computer keyboards operate on the principle of capacitance. As shown in Figure 20-18 , each key forms a small parallel-plate capacitor whose separation is reduced when the key is depressed. (a) Does depressing a key increase or decrease its capacitance? Explain. (b) Suppose the plates for each key have an area of 47.5 mm 2 and an initial separation of 0.550 mm. In addition, let the dielectric have a dielectric constant of 3.75. If the circuitry of the computer can detect a change in capacitance of 0.425 pF, what is the minimum distance a key must be depressed to be detected?
Predict/Calculate Computer Keyboards Many computer keyboards operate on the principle of capacitance. As shown in Figure 20-18, each key forms a small parallel-plate capacitor whose separation is reduced when the key is depressed. (a) Does depressing a key increase or decrease its capacitance? Explain. (b) Suppose the plates for each key have an area of 47.5 mm2 and an initial separation of 0.550 mm. In addition, let the dielectric have a dielectric constant of 3.75. If the circuitry of the computer can detect a change in capacitance of 0.425 pF, what is the minimum distance a key must be depressed to be detected?
A pendulum has a 0.4-m-long cord and is given a tangential velocity of 0.2 m/s toward the
vertical from a position 0 = 0.3 rad.
Part A
Determine the equation which describes the angular motion.
Express your answer in terms of the variable t. Express coefficients in radians to three significant figures.
ΜΕ ΑΣΦ
vec
(t)=0.3 cos (4.95t) + 0.101 sin (4.95t)
Submit Previous Answers Request Answer
× Incorrect; Try Again; 6 attempts remaining
Part A
■Review
The uniform 150-lb stone (rectangular block) is being turned over on its side by pulling the
vertical cable slowly upward until the stone begins to tip.
(Figure 1)
If it then falls freely (T = 0) from an essentially balanced at-rest position, determine the speed at which the corner A strikes the pad at B. The stone does not slip at its corner C as it falls. Suppose that height of the stone is
L = 1.2 ft.
Express your answer to three significant figures and include the appropriate units.
?
ft
VA 10.76
S
Submit Previous Answers Request Answer
× Incorrect; Try Again; 6 attempts remaining
Consider the circuit shown in the figure. The battery has emf ε = 69 volts and negligible internal resistance. The inductance is L = 0.4 H and the resistances are R 1 = 12 Ω and R 2 = 9.0 Ω. Initially the switch S is open and no currents flow. Then the switch is closed. After leaving the switch closed for a very long time, it is opened again. Just after it is opened, what is the current in R 1?
Microbiology with Diseases by Body System (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.