Modified Mastering Physics with Pearson eText -- Access Card -- for College Physics: Explore and Apply (18-Weeks)
2nd Edition
ISBN: 9780136781158
Author: Eugenia Etkina, Gorazd Planinsic
Publisher: Pearson Education (US)
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 20, Problem 8P
* A 15-g 10-cm-long wire is suspended horizontally between the poles of a horseshoe magnet. When the 0.50-A current in the wire is turned on. the wire jumps up and out of the magnet. What can you learn about the magnet using this information?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please help by:
Use a free body diagram
Show the equations
State your assumptions
Show your steps
Box your final answer
Thanks!
Please help by:
Use a free body diagram
Show the equations
State your assumptions
Show your steps
Box your final answer
Thanks!
By please don't use Chatgpt will upvote and give handwritten solution
Chapter 20 Solutions
Modified Mastering Physics with Pearson eText -- Access Card -- for College Physics: Explore and Apply (18-Weeks)
Ch. 20 - Review Question 20.1 What aspects of compass...Ch. 20 - Review Question 20.2 What is the direction of the...Ch. 20 - Review Question 20.3 Equation (20.2) defines the...Ch. 20 - Review Question 20.4 If the magnetic force is...Ch. 20 - Review Question 20.5 The definition of a 1-A...Ch. 20 - Review Question 20.6 What is the difference...Ch. 20 - Review Question 20.7 Why is there a difference in...Ch. 20 - You place a metal bar magnet on a swivel and bring...Ch. 20 - 2. An electron moves at constant speed from left...Ch. 20 - 3. What is one tesla?
a.
b.
c.
d. All of the...
Ch. 20 - Choose all that apply. Objects that produce...Ch. 20 - 5. What is one difference between magnetic and...Ch. 20 - 6. Two parallel straight current-carrying wires...Ch. 20 - 7. Choose all of the units that are fundamental,...Ch. 20 - 8. Particles of various masses, charges, and...Ch. 20 - When a diamagnetic material Is placed in an...Ch. 20 - If you triple the speed of a particle entering a...Ch. 20 - In 1911 physicists measured a magnetic field...Ch. 20 - Describe two experiments that will allow you to...Ch. 20 - How can you determine if there is a magnetic field...Ch. 20 - You have a magnet on which the poles are not...Ch. 20 - 15. List as many ways as you can to detect a...Ch. 20 - Prob. 16CQCh. 20 - Prob. 17CQCh. 20 - An electron flies through the magnetic field shown...Ch. 20 - Prob. 19CQCh. 20 - 20. A beam of electrons is not deflected as it...Ch. 20 - 21 A beam of electrons moving toward the east is...Ch. 20 - 22. Why are residents of northern Canada less...Ch. 20 - Prob. 23CQCh. 20 - An electron enters a solenoid at a small angle...Ch. 20 - Two parallel wires carry electric current in the...Ch. 20 - Prob. 26CQCh. 20 - Describe a situation in which an electron will be...Ch. 20 - When a switch is closed a compass needle deflects...Ch. 20 - 2. You have a lightbulb connected to a battery....Ch. 20 - 3 The current through a circuit is shown in Figure...Ch. 20 - 4. Draw field lines for the magnetic field...Ch. 20 - 5. * You need to determine the direction of the ...Ch. 20 - 6.* Two compass needles are fixed at the ends of a...Ch. 20 - 7. * In Houston, Earth’s field has a magnitude of...Ch. 20 - * A 15-g 10-cm-long wire is suspended horizontally...Ch. 20 - Prob. 9PCh. 20 - * A metal rod is connected to a battery through...Ch. 20 - * After you turned on the current in the circuit...Ch. 20 - 13. ** A square coil with 30 turns has sides that...Ch. 20 - * (a) Determine the magnetic force (magnitude and...Ch. 20 - 16. * A 500-turn square coil of wire is hinged to...Ch. 20 - * Electric motor 1 An electric motor has a square...Ch. 20 - 18. ** You make a seesaw by placing a 50-g magnet...Ch. 20 - * Electric motor 2 An electric motor has a...Ch. 20 - 20. Each of the lettered dots a-d shown In Figure...Ch. 20 - Duck gets a lift A duck accumulates a positive...Ch. 20 - 22. An electron of mass kg moves horizontally...Ch. 20 - A 1000-kg car moves west along the equator. At...Ch. 20 - * BIO Magnetic force exerted by Earth on ions in...Ch. 20 - 105m/s. Design a magnetic shield that will deflect...Ch. 20 - s magnetic field.Ch. 20 - 27. * An electron and a proton, moving side by...Ch. 20 - An east-west electric power line carries a 500-A...Ch. 20 - * Pigeons A solenoid of radius 1.0 m with 750...Ch. 20 - * A horizontal current-carrying wire that is...Ch. 20 - Prob. 31PCh. 20 - field inside a long solenoid is given by the...Ch. 20 - * Electron current and magnetic field in H atom In...Ch. 20 - * Two long, parallel wires are separated by 2.0 m....Ch. 20 - * Minesweepers During World War II, explosive...Ch. 20 - 40. An electron moves at the speed of toward the...Ch. 20 - * Mass spectrometer A mass spectrometer has a...Ch. 20 - 42. * Mass spectrometer 2 One type of mass...Ch. 20 - 43. * An ion with charge C moves at speed m/s...Ch. 20 - * A box has either an electric field or a magnetic...Ch. 20 - 45. ** A piece of wire, shown in Figure P20.45 ,...Ch. 20 - 46. ** EST Particles in cosmic rays are mostly...Ch. 20 - BIO Magnetic resonance imaging In magnetic...Ch. 20 - BIO Magnetic resonance imaging In magnetic...Ch. 20 - BIO Power lines—do their magnetic fields pose a...Ch. 20 - BIO Magnetic resonance imaging In magnetic...Ch. 20 - BIO Magnetic resonance imaging In magnetic...Ch. 20 - BIO Magnetic resonance imaging In magnetic...Ch. 20 - BIO Power linesdo their magnetic fields pose a...Ch. 20 - BIO Power linesdo their magnetic fields pose a...Ch. 20 - BIO Power linesdo their magnetic fields pose a...Ch. 20 - BIO Power linesdo their magnetic fields pose a...Ch. 20 - BIO Power linesdo their magnetic fields pose a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
[14.110] The following mechanism has been proposed for the gas-phase reaction of chloroform (CHCI3) and chlorin...
Chemistry: The Central Science (14th Edition)
83. The combustion of gasoline produces carbon dioxide and water. Assume gasoline to be pure octane (C8H18) and...
Introductory Chemistry (6th Edition)
Fill in the blanks: a. The wrist is also known as the _________ region. b. The arm is also known as the _______...
Human Anatomy & Physiology (2nd Edition)
1. Can the magnitude of the displacement vector be more than the distance traveled? Less than the distance trav...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
53. This reaction was monitored as a function of time:
A plot of In[A] versus time yields a straight ...
Chemistry: Structure and Properties (2nd Edition)
Two culture media were inoculated with four different bacteria. After incubation, the following results were ob...
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A collection of electric charges that share a common magnitude q (lower case) has been placed at the corners of a square, and an additional charge with magnitude Q (upper case) is located at the center of that square. The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four unique setups of charges are displayed. By moving one of the direction drawings from near the bottom to the bucket beside each of the setups, indicate the direction of the net electric force on the charge with magnitude Q, located near the center, else indicate that the magnitude of the net electric force is zero, if appropriate.arrow_forwardA number of electric charges has been placed at distinct points along a line with separations as indicated. Two charges share a common magnitude, q (lower case), and another charge has magnitude Q(upper case). The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four different configurations of charges are shown. For each, express the net electric force on the charge with magnitude Q (upper case) as F⃗E=FE,xî where the positive x direction is towards the right. By repositioning the figures to the area on the right, rank the configurations from the most negative value to the most positive value of FE,x.arrow_forwardFor each part make sure to include sign to represent direction, with up being positive and down being negative. A ball is thrown vertically upward with a speed of 30.5 m/s. A) How high does it rise? y= B) How long does it take to reach its highest point? t= C) How long does it take the ball return to its starting point after it reaches its highest point? t= D) What is its velocity when it returns to the level from which it started? v=arrow_forward
- Four point charges of equal magnitude Q = 55 nC are placed on the corners of a rectangle of sides D1 = 27 cm and D2 = 11cm. The charges on the left side of the rectangle are positive while the charges on the right side of the rectangle are negative. Use a coordinate system where the positive y-direction is up and the positive x-direction is to the right. A. Which of the following represents a free-body diagram for the charge on the lower left hand corner of the rectangle? B. Calculate the horizontal component of the net force, in newtons, on the charge which lies at the lower left corner of the rectangle.Numeric : A numeric value is expected and not an expression.Fx = __________________________________________NC. Calculate the vertical component of the net force, in newtons, on the charge which lies at the lower left corner of the rectangle.Numeric : A numeric value is expected and not an expression.Fy = __________________________________________ND. Calculate the magnitude of the…arrow_forwardPoint charges q1=50.0μC and q2=-35μC are placed d1=1.0m apart, as shown. A. A third charge, q3=25μC, is positioned somewhere along the line that passes through the first two charges, and the net force on q3 is zero. Which statement best describes the position of this third charge?1) Charge q3 is to the right of charge q2. 2) Charge q3 is between charges q1 and q2. 3) Charge q3 is to the left of charge q1. B. What is the distance, in meters, between charges q1 and q3? (Your response to the previous step may be used to simplify your solution.)Give numeric value.d2 = __________________________________________mC. Select option that correctly describes the change in the net force on charge q3 if the magnitude of its charge is increased.1) The magnitude of the net force on charge q3 would still be zero. 2) The effect depends upon the numeric value of charge q3. 3) The net force on charge q3 would be towards q2. 4) The net force on charge q3 would be towards q1. D. Select option that…arrow_forwardThe magnitude of the force between a pair of point charges is proportional to the product of the magnitudes of their charges and inversely proportional to the square of their separation distance. Four distinct charge-pair arrangements are presented. All charges are multiples of a common positive charge, q. All charge separations are multiples of a common length, L. Rank the four arrangements from smallest to greatest magnitude of the electric force.arrow_forward
- A number of electric charges has been placed at distinct points along a line with separations as indicated. Two charges share a common magnitude, q (lower case), and another charge has magnitude Q (upper case). The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four different configurations of charges are shown. For each, express the net electric force on the charge with magnitude Q (upper case) as F⃗E=FE,xî where the positive x direction is towards the right. By repositioning the figures to the area on the right, rank the configurations from the most negative value to the most positive value of FE,x.arrow_forwardA collection of electric charges that share a common magnitude q (lower case) has been placed at the corners of a square, and an additional charge with magnitude Q (upper case) is located at the center of that square. The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four unique setups of charges are displayed. By moving one of the direction drawings from near the bottom to the bucket beside each of the setups, indicate the direction of the net electric force on the charge with magnitude Q, located near the center, else indicate that the magnitude of the net electric force is zero, if appropriate.arrow_forwardIn Dark Souls 3 you can kill the Ancient Wyvern by dropping on its head from above it. Let’s say you jump off the ledge with an initial velocity of 3.86 mph and spend 1.72 s in the air before hitting the wyvern’s head. Assume the gravity is the same as that of Earth and upwards is the positive direction. Also, 1 mile = 1609 m. A) How high up is the the ledge you jumped from as measured from the wyvern’s head? B) What is your velocity when you hit the wyvern?arrow_forward
- A conducting sphere is mounted on an insulating stand, and initially it is electrically neutral. A student wishes to induce a charge distribution similar to what is shown here. The student may connect the sphere to ground or leave it electrically isolated. The student may also place a charged insulated rod near to the sphere without touching it. Q. The diagrams below indicate different choices for whether or not to include a ground connection as well as the sign of the charge on and the placement of an insulating rod. Choose a diagram that would produce the desired charge distribution. (If there are multiple correct answers, you need to select only one of them.)arrow_forwardA person is making pancakes and tries to flip one in the pan. The person is holding the pan a distance y0 = 1.10 m above the ground when they launch the pancake. The pancake just barely touches the ceiling, which is at a height y = 2.47 m above the ground. A) What must be the initial velocity of the pancake to reach that height? B) This person, shocked that they almost hit the ceiling, does not catch it on the way down and the pancake hits the floor. Assuming up as the positive direction, what is the velocity of the pancake when it hits the floor, ruining breakfast and this person’s day?arrow_forwardOne of Spider-Man’s less talked about powers is that he can jump really high. In the comics Spider-Man can jump upwards 3 stories. A) If Spider-Man leaves the ground at 14.3 m/s, how high can he get? y= B) If Spider-Man jumps directly upwards with the initial velocity used above and then returns to the ground, what total amount of time does he spend airborn? t=arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY