Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
9th Edition
ISBN: 9781305266292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 20, Problem 8CQ
To determine
How a layer of ice on the surface of fruits is advantageous.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Because water is a much more efficient thermal conductor than air, marine mammals often have thick layers of blubber (under-skin fat, with a thermal
conductivity of 0.250 W/(m °C)) and a small surface-to-volume ratio to minimize the loss of energy by heat to the surrounding water. The beluga whale,
Delphinapterus leucas, is a species of whale native to the Arctic and sub-Arctic regions. The core body temperature of this whale is usually 37.0°C, and its basal
metabolic rate (BMR) is 7.30 x 104 kJ/day. The beluga often finds itself near the Arctic ice sheet, where the water temperature is very close to 0°C.
(a) Modeling the body of the whale as a cylinder of length h = 4.10 m and diameter d = 1.20 m,estimate the average thickness (in cm) of the beluga's blubber
required to keep the core temperature of the whale fixed at 37.0°C. (For simplicity, treat the blubber layer on the lateral cylindrical surface as a rectangular
slab with a constant area. Take the front and rear surfaces of the…
On a cold day, you grab a piece of metal and a fallen tree limb, both with bare hands. Both have been lying outside for a long time and are at the same temperature. The metal feels colder than the tree limb. Why?
A 5000 kg African elephant has a resting metabolic rate of 2500 W. On a hot day, the elephant’s environment is likely to be nearly the same temperature as the animal itself, so cooling by radiation is not effective. The only plausible way to keep cool is by evaporation, and elephants spray water on their body to accomplish this. If this is the only possible means of cooling, how many kilograms of water per hour must be evaporated from an elephant’s skin to keep it at a constant temperature?
Chapter 20 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
Ch. 20.2 - Prob. 20.1QQCh. 20.3 - Prob. 20.2QQCh. 20.6 - Prob. 20.3QQCh. 20.6 - Characterize the paths in Figure 19.12 as...Ch. 20.7 - Prob. 20.5QQCh. 20 - Prob. 1OQCh. 20 - Prob. 2OQCh. 20 - Prob. 3OQCh. 20 - Prob. 4OQCh. 20 - Prob. 5OQ
Ch. 20 - Prob. 6OQCh. 20 - Prob. 7OQCh. 20 - Prob. 8OQCh. 20 - Prob. 9OQCh. 20 - Prob. 10OQCh. 20 - Prob. 11OQCh. 20 - Prob. 12OQCh. 20 - Prob. 13OQCh. 20 - Prob. 14OQCh. 20 - Prob. 15OQCh. 20 - Prob. 1CQCh. 20 - Prob. 2CQCh. 20 - Prob. 3CQCh. 20 - Prob. 4CQCh. 20 - Prob. 5CQCh. 20 - Prob. 6CQCh. 20 - Prob. 7CQCh. 20 - Prob. 8CQCh. 20 - Prob. 9CQCh. 20 - Prob. 10CQCh. 20 - Pioneers stored fruits and vegetables in...Ch. 20 - Prob. 12CQCh. 20 - Prob. 1PCh. 20 - Prob. 2PCh. 20 - Prob. 3PCh. 20 - The highest waterfall in the world is the Salto...Ch. 20 - Prob. 5PCh. 20 - The temperature of a silver bar rises by 10.0C...Ch. 20 - Prob. 7PCh. 20 - Prob. 8PCh. 20 - Prob. 9PCh. 20 - If water with a mass mk at temperature Tk is...Ch. 20 - Prob. 11PCh. 20 - Prob. 12PCh. 20 - Prob. 13PCh. 20 - Prob. 14PCh. 20 - Prob. 15PCh. 20 - Prob. 16PCh. 20 - Prob. 17PCh. 20 - How much energy is required to change a 40.0-g ice...Ch. 20 - Prob. 19PCh. 20 - Prob. 20PCh. 20 - Prob. 22PCh. 20 - In an insulated vessel, 250 g of ice at 0C is...Ch. 20 - Prob. 24PCh. 20 - Prob. 25PCh. 20 - Prob. 26PCh. 20 - One mole of an ideal gas is warmed slowly so that...Ch. 20 - Prob. 28PCh. 20 - Prob. 29PCh. 20 - A gas is taken through the cyclic process...Ch. 20 - Prob. 31PCh. 20 - Prob. 32PCh. 20 - A thermodynamic system undergoes a process in...Ch. 20 - Prob. 34PCh. 20 - A 2.00-mol sample of helium gas initially at 300...Ch. 20 - (a) How much work is done on the steam when 1.00...Ch. 20 - Prob. 37PCh. 20 - Prob. 38PCh. 20 - A 1.00-kg block of aluminum is warmed at...Ch. 20 - Prob. 40PCh. 20 - Prob. 41PCh. 20 - Prob. 42PCh. 20 - Prob. 43PCh. 20 - A concrete slab is 12.0 cm thick and has an area...Ch. 20 - Prob. 45PCh. 20 - Prob. 46PCh. 20 - Prob. 47PCh. 20 - Prob. 48PCh. 20 - Two lightbulbs have cylindrical filaments much...Ch. 20 - Prob. 50PCh. 20 - Prob. 51PCh. 20 - Prob. 52PCh. 20 - (a) Calculate the R-value of a thermal window made...Ch. 20 - Prob. 54PCh. 20 - Prob. 55PCh. 20 - Prob. 56PCh. 20 - Prob. 57PCh. 20 - Prob. 58APCh. 20 - Gas in a container is at a pressure of 1.50 atm...Ch. 20 - Prob. 60APCh. 20 - Prob. 61APCh. 20 - Prob. 62APCh. 20 - Prob. 63APCh. 20 - Prob. 64APCh. 20 - Review. Following a collision between a large...Ch. 20 - An ice-cube tray is filled with 75.0 g of water....Ch. 20 - Prob. 67APCh. 20 - Prob. 68APCh. 20 - An iron plate is held against an iron wheel so...Ch. 20 - Prob. 70APCh. 20 - Prob. 71APCh. 20 - One mole of an ideal gas is contained in a...Ch. 20 - Prob. 73APCh. 20 - Prob. 74APCh. 20 - Prob. 75APCh. 20 - Prob. 76APCh. 20 - Prob. 77APCh. 20 - Prob. 78APCh. 20 - Prob. 79APCh. 20 - Prob. 80APCh. 20 - Prob. 81CPCh. 20 - Prob. 82CPCh. 20 - Prob. 83CPCh. 20 - Prob. 84CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two concrete spans that form a bridge of length L are placed end to end so that no room is allowed for expansion (Fig. P16.63a). If a temperature increase of T occurs, what is the height y to which the spans rise when they buckle (Fig. P16.63b)?arrow_forwardWhy is a person able to remove a piece of dry aluminum foil from a hot oven with bare fingers, whereas a burn results if there is moisture on the foil?arrow_forwardA 6.25 kg block ice at 0 degrees Celsius is being warmed on a glass stove top. The thermal conductivity of the glass is 1.00 W/ (m K) and the glass is 0.50 cm thick. If the radiator plate underneath the glass raises the temperature of the bottom of the glass to 125 degrees Celsius, how long would it take to completely melt the ice? Assume the ice remains a solid rectangle with a square base of side 15 cm as it melts. B. What is the rate of entropy change in Joules/ Kelvin/ seconds of the melting ice?arrow_forward
- Students on a spring break picnic bring a cooler that contains 5.1 kg of ice at 0.0 °C. The cooler has walls that are 3.8 cm thick and are made of Styrofoam, which has a thermal conductivity of 0.030 W/(m. C°). The surface area of the cooler is 1.5 m², and it rests in the shade where the air temperature is 21 °C. (a) Find the rate at which heat flows into the cooler.arrow_forwardWhen energy shortages occur, magazine articles sometimes urge us to keep our homes at a constant temperature day and night to conserve fuel. They argue that when we turn down the heat at night, the walls, ceilings, and other areas cool off and must be reheated in the morning. So if we keep the temperature constant, these parts of the house will not cool off and will not have to be reheated. Does this argument make sense? Would we really save energy by following this advice?arrow_forwardFruit blossoms are permanently damaged when the temperature drops below about -4 °C, a “hard freeze.” Orchard owners sometimes spray a film of water over the blossoms to protect them when a hard freeze is expected. Give a reason for the protection.arrow_forward
- #6. My buddy is starting to get hypothermic (body temperature 306 K) during an epic backcountry ski adventure. Since I'm quite warm (body temperature 310 K), I decide to get in a sleeping bag with him to try and warm him up. What heat transfer mechanism will be most responsible for heating him up? For simplicity, ignore any internal temperature differences across my body (that is, assume my skin temperature is also 310 K). Use num- bers to support your answer (for human skin, you can use the following values: surface area A = 1.50 m², emissivity = 0.970, thickness d= 0.0250 m, thermal conductivty 0.200 ms.K)arrow_forward#6. My buddy is starting to get hypothermic (body temperature 306 K) during an epic backcountry ski adventure. Since I'm quite warm (body temperature 310 K), I decide to get in a sleeping bag with him to try and warm him up. What heat transfer mechanism will be most responsible for heating him up? For simplicity, ignore any internal temperature differences across my body (that is, assume my skin temperature is also 310 K). Use num- bers to support your answer (for human skin, you can use the following values: surface area A = 1.50 m², emissivity e = 0.970, thickness d = 0.0250 m, thermal conductivty 0.200 ) m-s-Karrow_forward#6. My buddy is starting to get hypothermic (body temperature 306 K) during an epic backcountry ski adventure. Since I'm quite warm (body temperature 310 K), I decide to get in a sleeping bag with him to try and warm him up. What heat transfer mechanism will be most responsible for heating him up? For simplicity, ignore any internal temperature differences across my body (that is, assume my skin temperature is also 310 K). Use num- bers to support your answer (for human skin, you can use the following values: surface area A = 1.50 m², emissivity € = 0.970, thickness d = 0.0250 m, thermal conductivty 0.200 ms.K) Jarrow_forward
- Sea breezes occur along coastlines, and consist of cool air moving toward the shore from the ocean. However, this only occurs during the day, and is a stronger effect when the air temperature on the land is greatest and the air temperature above the water is coldest. At night, the breezes are reversed, moving from the land toward the ocean. Taking into consideration the specific heat capacities of water and sand (which is about the same as that of concrete), explain how sea breezes form during the day and change direction at night.arrow_forwardThe inner and outer surfaces of a 25-cm-thick wall in summer are at 27°C and 44°C, respectively. The outer surface of the wall exchanges heat by radiation with surrounding surfaces at 40°C, and convection with ambient air also at 40°C with a convection heat transfer coefficient of 8 W/m2·K. Solar radiation is incident on the surface at a rate of 150 W/m2. If both the emissivity and the solar absorptivity of the outer surface are 0.8, determine the effective thermal conductivity of the wall.arrow_forwardYou have a Dewar flask (a laboratory vacuum flask) that has an open top and straight sides, as shown below. You fill it with water and put it into the freezer. It is effectively a perfect insulator, blocking all heat transfer, except on the top. After a time, ice forms on the surface of the water. The liquid water and the bottom surface of the ice, in contact with the liquid water, are at 0 °C . The top surface of the ice is at the same temperature as the air in the freezer, −18 °C. Set the rate of heat flow through the ice equal to the rate of loss of heat of fusion as the water freezes. When the ice layer is 0.700 cm thick, find the rate in m/s at which the ice is thickening.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY