Concept explainers
(a)
The average velocity of the particles.
(a)
Answer to Problem 6PQ
The average velocity of the particles is
Explanation of Solution
Write the equation for the average velocity in the x direction for the particles.
Here,
Write the equation for the average velocity in the y direction for the particles.
Here,
Write the equation for the average velocity in the z direction for the particles.
Here,
Write the equation for the average velocity of the particles.
Conclusion:
Substitute
Substitute
Substitute
Substitute
Thus, the average velocity of the particles is
(b)
The average speed of the particles.
(b)
Answer to Problem 6PQ
The average speed of the particles is
Explanation of Solution
Write the equation for the speedof the first particle.
Write the equation for the average speed.
Conclusion:
Substitute
Similarly, calculate the speed of the second particle.
Calculate the speed of the third particle.
Calculate the speed of the fourth particle.
Calculate the speed of the fifth particle.
Substitute
Thus, the average speed of the particles is
(c)
The rms speed of the particles.
(c)
Answer to Problem 6PQ
The rms speed of the particles is
Explanation of Solution
Write the equation for the rms speed of the particles.
Conclusion:
Substitute the values for the speeds of the particles in equation (VII) to find
Thus, the rms speed of the particles is
(d)
Compare the speeds of the particles.
(d)
Answer to Problem 6PQ
The rms speed is greater than the average speed.
Explanation of Solution
Write the equation for the magntide of the average velocity.
Here,
Conclusion:
Susbtitute
The value of rms speed is greater than the mahnitude of the average velocity. This is becauses, in calculationg the average velocity, the particles moving in the opposite direction is also considered.
Thus, the rms speed is greater than the average speed.
Want to see more full solutions like this?
Chapter 20 Solutions
Physics for Scientists and Engineers: Foundations and Connections
- What is the current, in amps, across a conductor that has a resistance of10 Ω and a voltage of 20 V? 2. A conductor draws a current of 100 A and a resistance of 5 Ω. What is thevoltageacross the conductor? 3. What is the resistance, in ohm’s, of a conductor that has a voltage of 80 kVand acurrent of 200 mA? 4. An x-ray imaging system that draws a current of 90 A is supplied with 220V. What is the power consumed? 5. An x-ray is produced using 800 mA and 100 kV. What is the powerconsumed in kilowatts?arrow_forwardՍՈՈՒ XVirginia Western Community Coll x P Course Home X + astering.pearson.com/?courseld=13289599#/ Figure y (mm) x=0x = 0.0900 m All ✓ Correct For either the time for one full cycle is 0.040 s; this is the period. Part C - ON You are told that the two points x = 0 and x = 0.0900 m are within one wavelength of each other. If the wave is moving in the +x-direction, determine the wavelength. Express your answer to two significant figures and include the appropriate units. 0 t(s) λ = Value m 0.01 0.03 0.05 0.07 Copyright © 2025 Pearson Education Inc. All rights reserved. 日 F3 F4 F5 1775 % F6 F7 B F8 Submit Previous Answers Request Answer ? × Incorrect; Try Again; 3 attempts remaining | Terms of Use | Privacy Policy | Permissions | Contact Us | Cookie Settings 28°F Clear 4 9:23 PM 1/20/2025 F9 prt sc F10 home F11 end F12 insert delete 6 7 29 & * ( 8 9 0 t = back Οarrow_forwardPart C Find the height yi from which the rock was launched. Express your answer in meters to three significant figures. Learning Goal: To practice Problem-Solving Strategy 4.1 for projectile motion problems. A rock thrown with speed 12.0 m/s and launch angle 30.0 ∘ (above the horizontal) travels a horizontal distance of d = 19.0 m before hitting the ground. From what height was the rock thrown? Use the value g = 9.800 m/s2 for the free-fall acceleration. PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems MODEL: Is it reasonable to ignore air resistance? If so, use the projectile motion model. VISUALIZE: Establish a coordinate system with the x-axis horizontal and the y-axis vertical. Define symbols and identify what the problem is trying to find. For a launch at angle θ, the initial velocity components are vix=v0cosθ and viy=v0sinθ. SOLVE: The acceleration is known: ax=0 and ay=−g. Thus, the problem becomes one of…arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning