Concept explainers
BIO Power lines—do their magnetic fields pose a risk? Power lines produce both electric and magnetic fields The interior of the human body is an electrical conductor, and as a result, electric fields are greatly reduced in magnitude within the body The electric fields inside the body from power lines are much smaller than electric fields normally existing in the body.
However, magnetic fields are not reduced in the body Earth's magnetic field, approximately
T, is very small and not regarded as a health threat Thus, it is interesting to compare Earth's magnetic field to fields produced by high power lines The magnetic field B produced at a distance r from a straight wire with an
The magnetic field from a high-voltage power line located 40 m above the ground carrying a 100-A current is much smaller than Earth's
Wires that provide electric power for household appliances also produce electric and magnetic fields The current in the wire for a 500-W space heater is about 5 A. With the wire located several meters from your body the magnetic field of such an appliance is somewhat smaller than Earth s magnetic field By comparison laboratory mice lived for several generations in 0.0010-T magnetic fields (20 times Earth s magnetic field) without any adverse effects.
During the last three decades, electric power use has increased the magnitudes of the
Which answer below is closest to the ratio of the power line
a. 0.001
b. 0.01
c. 0.1
d. 10
e. 100
Want to see the full answer?
Check out a sample textbook solutionChapter 20 Solutions
COLLEGE PHYSICS:VOL.1
Additional Science Textbook Solutions
Human Anatomy & Physiology (2nd Edition)
Introductory Chemistry (6th Edition)
Microbiology: An Introduction
Biology: Life on Earth (11th Edition)
Applications and Investigations in Earth Science (9th Edition)
Anatomy & Physiology (6th Edition)
- 4. In the figure below what is the value of the angle 0? A 30arrow_forwardPLEASE help with the experimental setup for this theory because i am so confused.arrow_forwardPart 2 - Geometry and Trigonometry 1. Line B touches the circle at a single point. Line A extends radially through the center of the circle. A B (a) Which line is tangential to the circumference of the circle? (b) What is the angle between lines A and B. 2. In the figure below what is the angle C? 30 45 3. In the figure below what is the value of the angle 0? 30° 4. In the figure below what is the value of the angle 0? A 30°arrow_forward
- Details solution No chatgpt plsarrow_forwardPlease solve and answer the problem correctly please.Thank you!!arrow_forwardWill you please walk me through the calculations in more detail for solving this problem? I am a bit rusty on calculus and confused about the specific steps of the derivation: https://www.bartleby.com/solution-answer/chapter-3-problem-15e-modern-physics-2nd-edition/9780805303087/7cf8c31d-9476-46d5-a5a9-b897b16fe6fcarrow_forward
- please help with the abstract. Abstract - This document outlines the format of the lab report and describes the Excel assignment. The abstract should be a short paragraph that very briefly includes the experiment objective, method, result and conclusion. After skimming the abstract, the reader should be able to decide whether they want to keep reading your work. Both the format of the report and the error analysis are to be followed. Note that abstract is not just the introduction and conclusion combined, but rather the whole experiment in short including the results. I have attacted the theory.arrow_forwardUsing the Experimental Acceleration due to Gravity values from each data table, Data Tables 1, 2, and 3; determine the Standard Deviation, σ, mean, μ, variance, σ2 and the 95% Margin of Error (Confidence Level) Data: Ex. Acc. 1: 12.29 m/s^2. Ex. Acc. 2: 10.86 m/s^2, Ex. Acc. 3: 9.05 m/s^2arrow_forwardIn the Super Smash Bros. games the character Yoshi’s has a “ground pound” down special move where he launches himself downward to attack an enemy beneath him. A) If Yoshi flings himself downwards at 9.76 miles per hour to hit an enemy 10.5 m below him, how fast is Yoshi traveling when he hits the enemy? 1 mile = 1609 m B) How much time does it take Yoshi to hit the enemy beneath him?arrow_forward
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning