Physics of Everyday Phenomena
Physics of Everyday Phenomena
9th Edition
ISBN: 9781259894008
Author: W. Thomas Griffith, Juliet Brosing Professor
Publisher: McGraw-Hill Education
bartleby

Concept explainers

Question
Book Icon
Chapter 20, Problem 4SP

(a)

To determine

The heat energy added to raise the temperature of water from 0 °C to 100 °C.

(a)

Expert Solution
Check Mark

Answer to Problem 4SP

The heat energy added to raise the temperature of water from 0 °C to 100 °C is 1.05×106 J.

Explanation of Solution

Given info: The mass of the water is 2.5 kg. The specific heat of water is 4186 J/kgK. The change in temperature is 100°C=100 K.

Write the expression to find the heat energy added to raise the temperature of water from 0 °C to 100 °C.

Q=mcΔt

Here,

Q is the heat energy

m is the mass of the water

c is the specific heat of water

Δt is the change in temperature

Substitute 100 K for Δt, 4186 J/kgK for c and 2.5 kg for m in the above equation.

Q=(2.5 kg)(4186 J/kgK)(100 K)=1.05×106 J

Conclusion:

Therefore, the heat energy added to raise the temperature of water from 0 °C to 100 °C is 1.05×106 J.

(b)

To determine

The amount of water increasing in the process.

(b)

Expert Solution
Check Mark

Answer to Problem 4SP

The amount of water increasing in the process is 1.16×1011 kg.

Explanation of Solution

Write the expression to find mass of the water increasing in the process.

m=E0c2

Here,

E0 is the energy

c is the speed of light

m is the amount of water

Substitute 1.05×106 J for E0 and 3×108 m/s for c in the above equation.

m=1.05×106 J(3×108 m/s)2=1.16×1011 kg

Conclusion:

Therefore, the amount of water increasing in the process is 1.16×1011 kg.

(c)

To determine

The comparison of the increase in mass with the original mass.

(c)

Expert Solution
Check Mark

Answer to Problem 4SP

The increase in mass is negligible when compared with the original mass.

Explanation of Solution

When we consider the expression of the ratio of the original mass to the increase in mass, the ratio becomes 2.5 kg : 1.16×1011 kg. This is very negligible.

This can be reduced to 1 part in 200 billion which is very negligible. This shows the insignificance of the increase in mass in this case.

Conclusion:

Therefore, the increase in mass is negligible when compared with the original mass.

(d)

To determine

The conversion of original mass into kinetic energy.

(d)

Expert Solution
Check Mark

Answer to Problem 4SP

The conversion of original mass into kinetic energy gives 2.25×1017 J.

Explanation of Solution

Write the expression for conversion of original mass into kinetic energy.

KE=mc2

Here,

m is the original mass

c is the speed of light

Substitute 3×108 m/s for c and 2.5 kg for m in the above equation.

KE=(2.5 kg)(3×108 m/s)2=2.25×1017 J

Conclusion:

Therefore, the conversion of original mass into kinetic energy gives 2.25×1017 J.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Your neighbor designs automobiles for a living. You are fascinated with her work. She is designing a new automobile and needs to determine how strong the front suspension should be. She knows of your fascination with her work and your expertise in physics, so she asks you to determine how large the normal force on the front wheels of her design automobile could become under a hard stop, ma when the wheels are locked and the automobile is skidding on the road. She gives you the following information. The mass of the automobile is m₂ = 1.10 × 103 kg and it can carry five passengers of average mass m = 80.0 kg. The front and rear wheels are separated by d = 4.45 m. The center of mass of the car carrying five passengers is dCM = 2.25 m behind the front wheels and hcm = 0.630 m above the roadway. A typical coefficient of kinetic friction between tires and roadway is μk 0.840. (Caution: The braking automobile is not in an inertial reference frame. Enter the magnitude of the force in N.)…
John is pushing his daughter Rachel in a wheelbarrow when it is stopped by a brick 8.00 cm high (see the figure below). The handles make an angle of 0 = 17.5° with the ground. Due to the weight of Rachel and the wheelbarrow, a downward force of 403 N is exerted at the center of the wheel, which has a radius of 16.0 cm. Assume the brick remains fixed and does not slide along the ground. Also assume the force applied by John is directed exactly toward the center of the wheel. (Choose the positive x-axis to be pointing to the right.) (a) What force (in N) must John apply along the handles to just start the wheel over the brick? (No Response) N (b) What is the force (magnitude in kN and direction in degrees clockwise from the -x-axis) that the brick exerts on the wheel just as the wheel begins to lift over the brick? magnitude (No Response) KN direction (No Response) ° clockwise from the -x-axis
An automobile tire is shown in the figure below. The tire is made of rubber with a uniform density of 1.10 × 103 kg/m³. The tire can be modeled as consisting of two flat sidewalls and a tread region. Each of the sidewalls has an inner radius of 16.5 cm and an outer radius of 30.5 cm as shown, and a uniform thickness of 0.600 cm. The tread region can be approximated as having a uniform thickness of 2.50 cm (that is, its inner radius is 30.5 cm and outer radius is 33.0 cm as shown) and a width of 19.2 cm. What is the moment of inertia (in kg. m²) of the tire about an axis perpendicular to the page through its center? 2.18 x Sidewall 33.0 cm 30.5 cm 16.5 cm Tread
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Inquiry into Physics
Physics
ISBN:9781337515863
Author:Ostdiek
Publisher:Cengage
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax