College Physics 11E Global Edition
College Physics 11E Global Edition
11th Edition
ISBN: 9781337620338
Author: SERWAY/VUILLE
Publisher: CENGAGE Learning Custom Publishing
bartleby

Concept explainers

Question
Book Icon
Chapter 20, Problem 46P

(a)

To determine

The voltage drop across the resistor. ΔVR at t=0

(a)

Expert Solution
Check Mark

Answer to Problem 46P

Solution: The voltage drop across the resistor. ΔVR at t=0 is 0

Explanation of Solution

Given Info: Electromotive force ε is 6.0V , Resistance R is 8.0 , Inductance L is 25mH , time t is 0 .

Formula to calculate the voltage drop across the resistor ΔVR

ΔVR=RI

  • ΔVR is the voltage drop across the resistor
  • R is the resistance
  • I is the current

As the voltage across the inductor decrease, the current through the inductor increases.

I=ε(1e(t/τ))R

  • ε is the electromotive force
  • t is the time elapsed
  • τ is the time constant

Use ε(1e(t/τ))/R for I in the above equation to find expression for ΔVR

ΔVR=R(ε(1e(tτ))R)=ε(1e(tτ))

Substitute 6.0V for ε and 0 for t in the above equationto find ΔVR

ΔVR=6.0V(1e0)=6.0V(11)=0

Conclusion:

The voltage drop across the resistor ΔVR at t=0 is 0

(b)

To determine

The voltage drop across the resistor. ΔVR after one time constant has passed. (t=τ)

(b)

Expert Solution
Check Mark

Answer to Problem 46P

Solution: The voltage drop across the resistor after one time constant has passed. ΔVR at (t=τ) is 3.8V

Explanation of Solution

Given Info: Electromotive force ε is 6.0V , Resistance R is 8.0 , Inductance L is 25mH , time t is τ

Formula to calculate the voltage drop across the resistor ΔVR

ΔVR=RI

Use ε(1e(t/τ))/R for I in the above equation to find expression for ΔVR

ΔVR=R(ε(1e(tτ))R)=ε(1e(tτ))

Substitute 6.0V for ε and τ for t in the above equationto find ΔVR

ΔVR=ε(1e(ττ))=(6.0V)(1e1)=(6.0V)(0.632)=3.8V

Conclusion:

The voltage drop across the resistor after one time constant has passed. ΔVR at (t=τ) is 3.8V

(c)

To determine

The voltage drop across the inductor ΔVL at t=0 .

(c)

Expert Solution
Check Mark

Answer to Problem 46P

Solution: The voltage drop across the inductor ΔVL at t=0 is 6.0V

Explanation of Solution

Given Info: Electromotive force ε is 6.0V , Resistance R is 8.0 , Inductance L is 25mH , time t is 0

Formula to calculate the voltage drop across the resistor ΔVL

ΔVL=RI

  • ΔVL is the voltage drop across the inductor

Use ε(e(t/τ))/R for I in the above equation to find expression for ΔVL

ΔVL=R(ε(e(tτ))R)=ε(e(tτ))

Substitute 6.0V for ε , and 0 for t in the above equationto find ΔVL

ΔVL=ε(e(tτ))=(6.0V)(e0)=(6.0V)(1)=6.0V

Conclusion:

The voltage drop across the inductor ΔVL at t=0 is 6.0V

(d)

To determine

The voltage drop across the resistor. ΔVL after one time constant has passed. (t=τ)

(d)

Expert Solution
Check Mark

Answer to Problem 46P

Solution: The voltage drop across the resistor after one time constant has passed. ΔVL at (t=τ) is 2.2V

Explanation of Solution

Given Info: Electromotive force ε is 6.0V , Resistance R is 8.0 , Inductance L is 25mH , time t is τ

Formula to calculate the voltage drop across the resistor ΔVL

ΔVL=RI

Use ε(e(t/τ))/R for I in the above equation to find expression for ΔVL

ΔVL=R(ε(e(tτ))R)=ε(e(tτ))

Substitute 6.0V for ε and τ for t in the above equationto find ΔVL

ΔVL=ε(e(ττ))=(6.0V)(e1)=(6.0V)(0.368)=2.2V

Conclusion:

The voltage drop across the resistor after one time constant has passed. ΔVL at (t=τ) is 2.2V

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
ROTATIONAL DYNAMICS Question 01 A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure rolling motion Question 02 A sphere and cylinder of the same mass and radius start from ret at the same point and more down the same plane inclined at 30° to the horizontal Which body gets the bottom first and what is its acceleration b) What angle of inclination of the plane is needed to give the slower body the same acceleration Question 03 i) Define the angular velocity of a rotating body and give its SI unit A car wheel has its angular velocity changing from 2rads to 30 rads seconds. If the radius of the wheel is 400mm. calculate ii) The angular acceleration iii) The tangential linear acceleration of a point on the rim of the wheel Question 04 in 20
Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…
SECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]

Chapter 20 Solutions

College Physics 11E Global Edition

Ch. 20 - As the conducting bar in Figure CQ20.5 moves to...Ch. 20 - How is electrical energy produced in dams? (That...Ch. 20 - Figure CQ20.7 shows a slidewire generator with...Ch. 20 - As the bar in Figure CQ20.5 moves perpendicular to...Ch. 20 - Eddy current are induced currents set up in a...Ch. 20 - The switch S in Figure 20.27 is closed at t = 0...Ch. 20 - A piece of aluminum is dropped vertically downward...Ch. 20 - When the switch in Figure CQ20.12a is closed, a...Ch. 20 - Prob. 13CQCh. 20 - A magneto is used to cause the spark in a spark...Ch. 20 - A uniform magnetic field of magnitude 0.50 T is...Ch. 20 - Find the flux of Earths magnetic field of...Ch. 20 - Prob. 3PCh. 20 - A long, straight wire carrying a current of 2.00 A...Ch. 20 - Prob. 5PCh. 20 - A magnetic field of magnitude 0.300 T is oriented...Ch. 20 - A cube of edge length = 2.5 cm is positioned as...Ch. 20 - Transcranial magnetic stimulation (TMS) is a...Ch. 20 - Three loops of wire move near a long straight wire...Ch. 20 - The flexible loop in Figure P20.10 has a radius of...Ch. 20 - Inductive charging is used to wirelessly charge...Ch. 20 - Medical devices implanted inside the body are...Ch. 20 - A technician wearing a circular metal band on his...Ch. 20 - In Figure P20.14, what is the direction of the...Ch. 20 - Prob. 15PCh. 20 - Find the direction of the current in the resistor...Ch. 20 - A circular loop of wire lies below a long wire...Ch. 20 - A square, single-turn wire loop = 1.00 cm on a...Ch. 20 - Prob. 19PCh. 20 - A circular coil enclosing an area of 100 cm2 is...Ch. 20 - To monitor the breathing of a hospital patient, a...Ch. 20 - An N-turn circular wire coil of radius r lies in...Ch. 20 - A truck is carrying a steel beam of length 15.0 m...Ch. 20 - Prob. 24PCh. 20 - Prob. 25PCh. 20 - In one of NASAs space tether experiments, a...Ch. 20 - Prob. 27PCh. 20 - An astronaut is connected to her spacecraft by a...Ch. 20 - Prob. 29PCh. 20 - Prob. 30PCh. 20 - Prob. 31PCh. 20 - Prob. 32PCh. 20 - Considerable scientific work is currently under...Ch. 20 - A flat coil enclosing an area of 0.10 m2 is...Ch. 20 - A generator connected to the wheel or hub of a...Ch. 20 - A motor has coils with a resistance of 30.0 and...Ch. 20 - A coil of 10.0 turns is in the shape of an eclipse...Ch. 20 - Prob. 38PCh. 20 - Prob. 39PCh. 20 - Prob. 40PCh. 20 - Prob. 41PCh. 20 - An emf of 24.0 mV is induced in a 500-turn coil...Ch. 20 - Prob. 43PCh. 20 - Prob. 44PCh. 20 - Prob. 45PCh. 20 - Prob. 46PCh. 20 - Prob. 47PCh. 20 - Prob. 48PCh. 20 - Prob. 49PCh. 20 - Prob. 50PCh. 20 - Prob. 51PCh. 20 - Prob. 52PCh. 20 - Additional Problems Two circular loop of wire...Ch. 20 - Prob. 54APCh. 20 - Prob. 55APCh. 20 - Prob. 56APCh. 20 - An 820-turn wire coil of resistance 24.0 is...Ch. 20 - A spacecraft is in 4 circular orbit of radius...Ch. 20 - Prob. 59APCh. 20 - Prob. 60APCh. 20 - Prob. 61APCh. 20 - Prob. 62APCh. 20 - The magnetic field shown in Figure P20.63 has a...Ch. 20 - Prob. 64APCh. 20 - In Figure P20.65 the rolling axle of length 1.50 m...Ch. 20 - An N-turn square coil with side and resistance R...Ch. 20 - A conducting rectangular loop of mass M,...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning